Advanced Program Representations

Goal:
» more effective analysis
« faster analysis
« easier transformations

Approach:
more directly capture important program properties

+ e.g. data flow, independence

Craig Chambers 97 CSE 501

Examples

CFG:
+ simple to build
+ complete
+ no derived info to keep up to date during transformations

— computing info is slow and/or ineffective
« lots of propagation of big sets/maps

Craig Chambers 98 CSE 501

Def/use chains

Def/use chains directly linking defs to uses & vice versa
+ directly captures data flow for analysis
+ e.g. constant propagation, live variables easy

— ignores control flow

* misses some optimization opportunities,
since it assumes all paths taken

* not executable by itself,
since it doesn’t include control dependence links

* not appropriate for some optimizations,
such as CSE and code motion

— must update after transformations
* but only ever remove edges, not add

— space-consuming, in worst case: O(N?) edges per variable

Craig Chambers 99 CSE 501

Example

Craig Chambers 100 CSE 501




Static single assignment (SSA) form

[Alpern, Rosen, Wegman, & Zadeck, two POPL 88 papers]
Invariant: at most one definition reaches each use

Constructing equivalent SSA form of program:
1. Create new target names for all definitions

2. Insert pseudo-assignments at merge points
reached by multiple definitions of same source variable:
Xp = 0(xg,...,x,)

3. Adjust uses to refer to appropriate new names

Craig Chambers 101 CSE 501

Example
X 1=
e X .
X 1= X + Yy X 1= ..
y =y +1
X ... X
Craig Chambers 102 CSE 501

Comparison

+ lower worst-case space cost than def/use chains: O(EV)

+

algorithms simplified by single assignment property:
+ variable has a unique meaning independent of program point
+ can treat variable, its defining stmt, & its value synonymously

+ can have single global table mapping var to info,
not one per program pt. that must be propagated, copied, etc.

+ transformations not limited by reuse of variable names

+ can reorder assignments to same source variable, without
changing meaning in SSA version

still not executable by itself
» and ¢-functions require an oracle!
still must update/reconstruct after transformations

— inverse property (static single use) not provided

+ dependence flow graphs [Pingali et al] and
value dependence graphs [Weise et al] fix this,
with single-entry, single-exit (SESE) region analysis

Very popular in research compilers, analysis descriptions

Craig Chambers 103 CSE 501

Implementing ¢-functions

Semantics of x;; := ¢0(x;,...,x,):
set x,, to x;, if control last came from predecessor i

How to implement (generate code for) this?
+ along each predecessor edge i, insert x,, := x;
+ delete ¢ statement

If register allocator assigns x,, x;, ..., x, to the same register,
then these move instructions will be deleted

* X, X1, ..., X, Usually have non-overlapping lifetimes,
so this kind of register assignment is legal

Craig Chambers 104 CSE 501




Common subexpression elimination

At each program point, compute set of available expressions:
map from expression to variable holding that expression

ceg. {ath - x, ¢ >y, *p = z}

More generally, can have map from
expensive expression to equivalent but cheaper expression

+ subsumes CSE, constant prop, copy prop., ...

CSE transformation using AE analysis results:
if a+b—x available before y := a+b, transformto y := x

Specification

All possible available expressions AvailableExpr = Exprx Var

* Expr = set of all right-hand-side expressions in procedure
(or maybe all possible expressions)

» Var = set of all variables in procedure
[is this a function from Exprto Var, or just a relation?]
Domain AV = Pow(AvailableExpr)
ae;<ayae, &
Tay =
Lav =

aeq Nay atr &

height(AV) =
Craig Chambers 105 CSE 501 Craig Chambers 106 CSE 501
Flow functions Example

What direction to do analysis?

Initial conditions?

AEX 1= Y op Z(in) =

AEX r= Y(in) =

Craig Chambers 107 CSE 501

l

i :=a+b

X i * 4
i y

j = =i * 4
i:=c i=1i4+1
z =3 * 4 /

m :=Db + a

w =4 *m

Craig Chambers 108 CSE 501




Exploiting SSA form

Problem: previous available expressions overly sensitive to
name choices, operand orderings, renamings, assignments,

A solution:

Step 1: convert to SSA form

« distinct values have distinct names
= can simplify flow functions to ignore assignments

Step 2: do copy propagation
» same values (usually) have same names
= avoid missed opportunities

Step 3: adopt canonical ordering for commutative operators
= avoid missed opportunities

Craig Chambers 109 CSE 501

Example

i::=a+b
x =1 * 4

=i

i:=c =1 * 4

z = 3 * 4 i::=1i4+1
m := b + a
w =4 *m

Craig Chambers 110 CSE 501

After SSA conversion, copy propagation, &
operand order canonicalization:

'

i, 1= a; + by

Xy 1= 1, * 4
Fam i 5= 0(ig, i5)
i, 1= cq yp = i, * 4
zyp =iy * 4 i3 1= ig + 1

m; := a; + by

W, :=m; * 4

Craig Chambers 111 CSE 501

SSA form and pointers

What about pointers?

x = 5;

y = 7;

p := new int;

g := testl ? &x : (test2 ? &y : p);
*q = 9;

// what are the unique SSA names for x & y here? *p?
X 1= x + 1;

// what does g point to here?

SSA wishes to assign a unique name for each variable
(memory location?) at each point

» dynamic memory allocations introduce many
“anonymous variables”

 pointer stores don’t definitely update any variable,
but may update many

» SSA gives different names to the same variable,
but & creates a pointer to all of them

Craig Chambers 112 CSE 501




Some solutions

Option 1: don’t use SSA invariant for pointed-to memory
» heap memory, variables that have their addresses taken

Option 2: insert copies between SSA vars and real vars
before and/or after may-use/may-def operations

* pointers point to real, non-SSA variable
» insert var := var;before any may-use/-def of var
* insert var; :=1(var;, var) after any may-def of var

* (varj, var) uses oracle to return either var;or var

Loop-invariant code motion

Two steps: analysis & transformation

Step 1: find invariant computations in loop
* invariant: computes same result each time evaluated

Step 2: move them outside loop
+ to top: code hoisting
« if used within loop

xp 1= 5 « to bottom: code sinking
y1 = 7; « if only used after loop
P, := new int;
q, := testl ? &x : (test2 ? &y : p1);
X 1= Xp;7
y = Yyi;
*qp = 9;
X, 1= 1(x7,X%X);
Vo i= Uy, y)i
X3 1= X, + 1;
Craig Chambers 113 CSE 501 Craig Chambers 114 CSE 501
Example Detecting loop-invariant expressions

Craig Chambers 115 CSE 501

An expression is invariant w.r.t. a loop L iff:

(base cases:)
« it's a constant
« it's a variable use, all of whose defs are outside L

(inductive cases:)

* it's a pure computation
all of whose args are loop-invariant

+ it's a variable use with only one reaching def,
and the rhs of that def is loop-invariant

Craig Chambers 116 CSE 501




Computing loop-invariant expressions

Option 1:
* repeat iterative dfa
until no more invariant expressions found

« to start, optimistically assume all expressions loop-invariant

Option 2:
* build def/use chains,

follow chains to identify & propagate
invariant expressions

Option 3:

» convert to SSA form,
then similar to def/use form

Craig Chambers 117 CSE 501

Example using def/use chains

Craig Chambers 118 CSE 501

Loop-invariant expression detection for SSA form

SSA form simplifies detection of loop invariants,
since each use has only one reaching definition

An expression is invariant w.r.t. a loop L iff:

(base cases:)
« it's a constant

* it's a variable use whose single def is outside L

(inductive cases:)
* it's a pure computation
all of whose args are loop-invariant
« it's a variable use
whose single def’s rhs is loop-invariant

¢ functions are not pure

Craig Chambers 119 CSE 501

Example using SSA form

[ -
xy = 0(xy, x3)
v3 = 0(vi, v2r v3)
Z, 1= Xy, ¥ y3
d1 = Y3 *ys3
Wy 1= y3 + 2

Craig Chambers

120

CSE 501




Example using SSA form & preheader

| v = ¢y, Y2)|

Y

Xy = 0(x1, x3)

*

Z1 = X Y3
qr = V3 * y3
Wy = y3 + 2

Py = w3 + y3
X3 1= X5 + 1

gz :=q; + 1

Craig Chambers 121 CSE 501

Code motion

When find invariant computation S:z := x op vy,
want to move it out of loop (to loop preheader)

» preserve relative order of invariant computations,
to preserve data flow among moved statements

When is this legal?

Craig Chambers 122 CSE 501

Condition #1: domination restriction

Tomove S:z := x op vy,
S must dominate all loop exits
[A dominates B when all paths to B first pass through A]
» otherwise may execute S when never executed otherwise
« if Sis pure, then can relax this condition,
at cost of possibly slowing down program

Craig Chambers 123 CSE 501

Avoiding domination restriction

Requirement that invariant computation dominates exit is strict
 nothing inside a conditional branch can be moved
+ nothing after a loop exit test can be moved
» what happens in a while loop? a for loop?

Can be circumvented through other transformations
such as loop normalization

» move loop exit test to bottom (while-do = if-do-while)

Before After

Craig Chambers 124 CSE 501




Condition #2: data dependence restriction

Tomove S:z := x op vy,
S must be the only assignment to z in loop, and
no use of z in loop is reached by any def other than S

» otherwise may reorder defs/uses and change outcome

Craig Chambers 125 CSE 501

Avoiding data dependence restriction

Restriction unnecessary if in SSA form

+ implementation of ¢ functions as moves will cope with
reordered defs/uses

Craig Chambers 126 CSE 501

More refined representations

Problem: control-flow edges in CFG overspecify evaluation
order

Solution: introduce more refined notions w/ fewer constraining
edges that still capture required orderings

« side-effects occur in proper order
« side-effects occur only under right conditions

Some ideas:

« explicit control dependence edges,
control-equivalent regions,
control-dependence graph (PDG)

+ operators as nodes (Click, VDG, Whirlwind, etc.)
» computable ¢-function operator nodes
+ control dependence via data dependence (VDG)

Craig Chambers 127 CSE 501

Control dependence graph

Program dependence graph (PDG):
data dependence graph + control dependence graph (CDG)
[Ferrante, Ottenstein, & Warren, TOPLAS 87]

Idea: represent controlling conditions directly
» complements data dependence representation

A node (basic block) Yis control-dependent on another X
iff X determines whether Y executes, i.e.

« there exists a path from Xto Y's.t. every node in the path
other than X & Y'is post-dominated by Y

» Xis not post-dominated by Y

Control dependence graph:
Y proper descendant of Xiff Y control-dependent on X

+ label each child edge with required branch condition
« group all children with same condition under region node

Two sibling nodes execute under same control conditions =
can be reordered or parallelized, as data dependences allow

(Challenging to “sequentialize” back into CFG form)

Craig Chambers 128 CSE 501




Example
Ty :=p+q
2 x > 02
] ]

An example with a loop

Craig Chambers 129 CSE 501 Craig Chambers 130 CSE 501
Operators as nodes Example
Before: nodes in CFG were simple assignments p = &r;

« could have operations on r.h.s. X 1= *p;

+ used variable names to refer to other values a :=x * y;

W o= X;
Alternative: treat the operators themselves as the nodes X 1= a + aj;
« refer directly other other nodes for their operands v o=y *ow;
a :=v * 2;
Node ::= Constant // 0 operands
| Var // 0 operands
| &Var // 0 operands
| Unop // 1 operand
| Binop // 2 operands
| * (ptr deref) // 1 operand
| . (field deref) // 1 operand
| [1 (array deref) // 2 operands
() // n operands
| Fn() // n operands
| Vvar:= (varassn) // 1 operand
| *:= (ptrassn) // 2 operands
Flow of data captured directly in operand dataflow edges
Also have control flow edges sequencing these nodes
» or some more refined control dependence edges
Craig Chambers 131 CSE 501 Craig Chambers 132 CSE 501




Improvements

Bypass variable stores and loads
* i.e., build def/use chains

Treat variable names as (temporary) labels on nodes

» avariable reference implemented by an edge from the node
with that label

+ avariable assignment shifts the label

The nodes themselves become
the subscripted variables of SSA form

Each computation has its own name (i.e., itself)

Craig Chambers 133 CSE 501

More improvements

“Value numbering”:
merge all nodes that compute the same result

+ same operator

+ same data operands (recursively)

» same control dependence conditions
+ operator is pure

Implements (local) CSE

Can do this bottom-up as nodes are initially constructed
* “hash consing”

In face of possibly cyclic data dependence edges,
an optimistic algorithm can get better results [Alpern et al. 88]

Would like to support algebraic identities, too, e.g.
+ commutative operators
¢ xX+x =X*2

 associativity, distributivity

Craig Chambers 134 CSE 501

Another example

y :=p + d;
if m > 1 then

a =y * x;
b = a;
else
b :=x - 2;
a := b;
endif
if m < 1 then
d =y * x;
else
d :=x - 2;
endif
w :=a / r;
u :=Db / r;
t :=d / r;
if m > 1 then
c =y * x;
else
c =X — 2;
endif
z :=c¢c / r;

Craig Chambers 135 CSE 501

The example, in SSA form

y :=p + d;
if m > 1 then

a; =y * x; by 1= a;;
else

by, := x - 2; a, := by;
as := 0(aj,aj);

by = ¢(by,by);
if m < 1 then
d, =y * x;

d, := x - 2;
ds := ¢(dy,dy);
w = a3 / r;

= by / r;

t :=ds / r;
if m > 1 then

cp =y * X;
else

C3 =X - 2;
¢(C1102);

z 1= c3 / r;

C3

Craig Chambers 136 CSE 501




An improvement

¢-functions were treated poorly
» impure, since don’t know when they’re the same

» even if they have the same operands
and are in the same control equivalent region!

Fix: give them an additional input: the selector value
(now called select nodes, sometimes written as )

* e.g., a boolean, for a 2-input ¢
* e.g., aninteger, for an n-input ¢

¢-functions now are pure!

Craig Chambers 137

CSE 501

Value dependence graphs

[Weise, Crew, Ernst, & Steensgaard, POPL 94]

Idea: represent all dependences,
including control dependences, as data dependences

+ simple, direct dataflow-based representation
of all “interesting” relationships

» analyses become easier to describe & reason about
— harder to sequentialize into CFG

Control dependences as data dependences:
+ control dependence on order of side-effects
= data dependence on reading & writing to global Store

+ optimizations to break up accesses to single Store into separate
independent chunks
(e.g. a single variable, a single data structure)

« control dependence on outcome of branch
= a select node, taking test, then, and else inputs
= demand-driven evaluation model

Loops implemented as tail-recursive calls to local procedures

Apply CSE, folding, etc. as nodes are built/updated

Craig Chambers 138 CSE 501

Example, after store splitting

y =Pt g;

if x > 0 then a := x * y else a 1=y - 2;
w =y / d;

if x > 0 then b := 1 << w;

r := a

Craig Chambers 139

CSE 501

Sequentialization

How to generate code from a soup of operators and edges?
Need to sequentialize back into a regular CFG

Must find an ordering that respects dependences
(data and control)

Hard with arbitrary graph

+ can get cycles with full PDG, VDG transforms
* may need to duplicate code to get a legal schedule

Craig Chambers 140 CSE 501




Sequentialization via placement

A solution, due to Click: treat as placement problem
— limits transformations/optimizations possible
+ simpler to implement

Start from original (empty) CFG

Goal: assign each operation to
the least-frequently-executed basic block
that respects its data dependences

+ ¢-nodes tied to their original merge point

Hoist operations out of loops where possible
Push operations into conditionals where possible

Craig Chambers 141 CSE 501

Example

i = 0;
while do
x =1 * Db;
if then
w = cCc * c;
Yy 1= X + W;
else
y = 9;
end
print(y);
i =1+ 1;
end
Craig Chambers 142

CSE 501

Example, in SSA form

i, = 0;
while ... do
iy 1= O0(iy, 1,);
X = i3 * Db;
if ... then
w = c * c;
y1 = x + w;
else
yo = 9;
end
vy = 0(y1, v2)i
print(ys);
i, =15 + 1;
end

Craig Chambers 143 CSE 501




