Advanced Program Representations

Goal:
» more effective analysis
« faster analysis
« easier transformations

Approach:
more directly capture important program properties

+ e.g. data flow, independence
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Examples

CFG:
+ simple to build
+ complete
+ no derived info to keep up to date during transformations

— computing info is slow and/or ineffective
« lots of propagation of big sets/maps
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Def/use chains

Def/use chains directly linking defs to uses & vice versa
+ directly captures data flow for analysis
+ e.g. constant propagation, live variables easy

— ignores control flow

* misses some optimization opportunities,
since it assumes all paths taken

* not executable by itself,
since it doesn’t include control dependence links

* not appropriate for some optimizations,
such as CSE and code motion

— must update after transformations
* but only ever remove edges, not add

— space-consuming, in worst case: O(N?) edges per variable
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Example
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Static single assignment (SSA) form

[Alpern, Rosen, Wegman, & Zadeck, two POPL 88 papers]
Invariant: at most one definition reaches each use

Constructing equivalent SSA form of program:
1. Create new target names for all definitions

2. Insert pseudo-assignments at merge points
reached by multiple definitions of same source variable:
Xp = 0(xg,...,x,)

3. Adjust uses to refer to appropriate new names
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Example
X 1=
e X .
X 1= X + Yy X 1= ..
y =y +1
X ... X
Craig Chambers 102 CSE 501

Comparison

+ lower worst-case space cost than def/use chains: O(EV)

+

algorithms simplified by single assignment property:
+ variable has a unique meaning independent of program point
+ can treat variable, its defining stmt, & its value synonymously

+ can have single global table mapping var to info,
not one per program pt. that must be propagated, copied, etc.

+ transformations not limited by reuse of variable names

+ can reorder assignments to same source variable, without
changing meaning in SSA version

still not executable by itself
» and ¢-functions require an oracle!
still must update/reconstruct after transformations

— inverse property (static single use) not provided

+ dependence flow graphs [Pingali et al] and
value dependence graphs [Weise et al] fix this,
with single-entry, single-exit (SESE) region analysis

Very popular in research compilers, analysis descriptions
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Implementing ¢-functions

Semantics of x;; := ¢0(x;,...,x,):
set x,, to x;, if control last came from predecessor i

How to implement (generate code for) this?
+ along each predecessor edge i, insert x,, := x;
+ delete ¢ statement

If register allocator assigns x,, x;, ..., x, to the same register,
then these move instructions will be deleted

* X, X1, ..., X, Usually have non-overlapping lifetimes,
so this kind of register assignment is legal
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Common subexpression elimination

At each program point, compute set of available expressions:
map from expression to variable holding that expression

ceg. {ath - x, ¢ >y, *p = z}

More generally, can have map from
expensive expression to equivalent but cheaper expression

+ subsumes CSE, constant prop, copy prop., ...

CSE transformation using AE analysis results:
if a+b—x available before y := a+b, transformto y := x

Specification

All possible available expressions AvailableExpr = Exprx Var

* Expr = set of all right-hand-side expressions in procedure
(or maybe all possible expressions)

» Var = set of all variables in procedure
[is this a function from Exprto Var, or just a relation?]
Domain AV = Pow(AvailableExpr)
ae;<ayae, &
Tay =
Lav =

aeq Nay atr &

height(AV) =
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Flow functions Example

What direction to do analysis?

Initial conditions?

AEX 1= Y op Z(in) =

AEX r= Y(in) =
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l

i :=a+b

X i * 4
i y

j = =i * 4
i:=c i=1i4+1
z =3 * 4 /

m :=Db + a

w =4 *m
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Exploiting SSA form

Problem: previous available expressions overly sensitive to
name choices, operand orderings, renamings, assignments,

A solution:

Step 1: convert to SSA form

« distinct values have distinct names
= can simplify flow functions to ignore assignments

Step 2: do copy propagation
» same values (usually) have same names
= avoid missed opportunities

Step 3: adopt canonical ordering for commutative operators
= avoid missed opportunities
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Example

i::=a+b
x =1 * 4

=i

i:=c =1 * 4

z = 3 * 4 i::=1i4+1
m := b + a
w =4 *m
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After SSA conversion, copy propagation, &
operand order canonicalization:

'

i, 1= a; + by

Xy 1= 1, * 4
Fam i 5= 0(ig, i5)
i, 1= cq yp = i, * 4
zyp =iy * 4 i3 1= ig + 1

m; := a; + by

W, :=m; * 4
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SSA form and pointers

What about pointers?

x = 5;

y = 7;

p := new int;

g := testl ? &x : (test2 ? &y : p);
*q = 9;

// what are the unique SSA names for x & y here? *p?
X 1= x + 1;

// what does g point to here?

SSA wishes to assign a unique name for each variable
(memory location?) at each point

» dynamic memory allocations introduce many
“anonymous variables”

 pointer stores don’t definitely update any variable,
but may update many

» SSA gives different names to the same variable,
but & creates a pointer to all of them
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Some solutions

Option 1: don’t use SSA invariant for pointed-to memory
» heap memory, variables that have their addresses taken

Option 2: insert copies between SSA vars and real vars
before and/or after may-use/may-def operations

* pointers point to real, non-SSA variable
» insert var := var;before any may-use/-def of var
* insert var; :=1(var;, var) after any may-def of var

* (varj, var) uses oracle to return either var;or var

Loop-invariant code motion

Two steps: analysis & transformation

Step 1: find invariant computations in loop
* invariant: computes same result each time evaluated

Step 2: move them outside loop
+ to top: code hoisting
« if used within loop

xp 1= 5 « to bottom: code sinking
y1 = 7; « if only used after loop
P, := new int;
q, := testl ? &x : (test2 ? &y : p1);
X 1= Xp;7
y = Yyi;
*qp = 9;
X, 1= 1(x7,X%X);
Vo i= Uy, y)i
X3 1= X, + 1;
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Example Detecting loop-invariant expressions
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An expression is invariant w.r.t. a loop L iff:

(base cases:)
« it's a constant
« it's a variable use, all of whose defs are outside L

(inductive cases:)

* it's a pure computation
all of whose args are loop-invariant

+ it's a variable use with only one reaching def,
and the rhs of that def is loop-invariant
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Computing loop-invariant expressions

Option 1:
* repeat iterative dfa
until no more invariant expressions found

« to start, optimistically assume all expressions loop-invariant

Option 2:
* build def/use chains,

follow chains to identify & propagate
invariant expressions

Option 3:

» convert to SSA form,
then similar to def/use form
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Example using def/use chains
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Loop-invariant expression detection for SSA form

SSA form simplifies detection of loop invariants,
since each use has only one reaching definition

An expression is invariant w.r.t. a loop L iff:

(base cases:)
« it's a constant

* it's a variable use whose single def is outside L

(inductive cases:)
* it's a pure computation
all of whose args are loop-invariant
« it's a variable use
whose single def’s rhs is loop-invariant

¢ functions are not pure
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Example using SSA form

[ -
xy = 0(xy, x3)
v3 = 0(vi, v2r v3)
Z, 1= Xy, ¥ y3
d1 = Y3 *ys3
Wy 1= y3 + 2
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Example using SSA form & preheader

| v = ¢y, Y2)|

Y

Xy = 0(x1, x3)

*

Z1 = X Y3
qr = V3 * y3
Wy = y3 + 2

Py = w3 + y3
X3 1= X5 + 1

gz :=q; + 1
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Code motion

When find invariant computation S:z := x op vy,
want to move it out of loop (to loop preheader)

» preserve relative order of invariant computations,
to preserve data flow among moved statements

When is this legal?

Craig Chambers 122 CSE 501

Condition #1: domination restriction

Tomove S:z := x op vy,
S must dominate all loop exits
[A dominates B when all paths to B first pass through A]
» otherwise may execute S when never executed otherwise
« if Sis pure, then can relax this condition,
at cost of possibly slowing down program
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Avoiding domination restriction

Requirement that invariant computation dominates exit is strict
 nothing inside a conditional branch can be moved
+ nothing after a loop exit test can be moved
» what happens in a while loop? a for loop?

Can be circumvented through other transformations
such as loop normalization

» move loop exit test to bottom (while-do = if-do-while)

Before After

Craig Chambers 124 CSE 501




Condition #2: data dependence restriction

Tomove S:z := x op vy,
S must be the only assignment to z in loop, and
no use of z in loop is reached by any def other than S

» otherwise may reorder defs/uses and change outcome
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Avoiding data dependence restriction

Restriction unnecessary if in SSA form

+ implementation of ¢ functions as moves will cope with
reordered defs/uses
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More refined representations

Problem: control-flow edges in CFG overspecify evaluation
order

Solution: introduce more refined notions w/ fewer constraining
edges that still capture required orderings

« side-effects occur in proper order
« side-effects occur only under right conditions

Some ideas:

« explicit control dependence edges,
control-equivalent regions,
control-dependence graph (PDG)

+ operators as nodes (Click, VDG, Whirlwind, etc.)
» computable ¢-function operator nodes
+ control dependence via data dependence (VDG)
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Control dependence graph

Program dependence graph (PDG):
data dependence graph + control dependence graph (CDG)
[Ferrante, Ottenstein, & Warren, TOPLAS 87]

Idea: represent controlling conditions directly
» complements data dependence representation

A node (basic block) Yis control-dependent on another X
iff X determines whether Y executes, i.e.

« there exists a path from Xto Y's.t. every node in the path
other than X & Y'is post-dominated by Y

» Xis not post-dominated by Y

Control dependence graph:
Y proper descendant of Xiff Y control-dependent on X

+ label each child edge with required branch condition
« group all children with same condition under region node

Two sibling nodes execute under same control conditions =
can be reordered or parallelized, as data dependences allow

(Challenging to “sequentialize” back into CFG form)
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Example
Ty :=p+q
2 x > 02
] ]

An example with a loop
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Operators as nodes Example
Before: nodes in CFG were simple assignments p = &r;

« could have operations on r.h.s. X 1= *p;

+ used variable names to refer to other values a :=x * y;

W o= X;
Alternative: treat the operators themselves as the nodes X 1= a + aj;
« refer directly other other nodes for their operands v o=y *ow;
a :=v * 2;
Node ::= Constant // 0 operands
| Var // 0 operands
| &Var // 0 operands
| Unop // 1 operand
| Binop // 2 operands
| * (ptr deref) // 1 operand
| . (field deref) // 1 operand
| [1 (array deref) // 2 operands
() // n operands
| Fn() // n operands
| Vvar:= (varassn) // 1 operand
| *:= (ptrassn) // 2 operands
Flow of data captured directly in operand dataflow edges
Also have control flow edges sequencing these nodes
» or some more refined control dependence edges
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Improvements

Bypass variable stores and loads
* i.e., build def/use chains

Treat variable names as (temporary) labels on nodes

» avariable reference implemented by an edge from the node
with that label

+ avariable assignment shifts the label

The nodes themselves become
the subscripted variables of SSA form

Each computation has its own name (i.e., itself)
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More improvements

“Value numbering”:
merge all nodes that compute the same result

+ same operator

+ same data operands (recursively)

» same control dependence conditions
+ operator is pure

Implements (local) CSE

Can do this bottom-up as nodes are initially constructed
* “hash consing”

In face of possibly cyclic data dependence edges,
an optimistic algorithm can get better results [Alpern et al. 88]

Would like to support algebraic identities, too, e.g.
+ commutative operators
¢ xX+x =X*2

 associativity, distributivity
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Another example

y :=p + d;
if m > 1 then

a =y * x;
b = a;
else
b :=x - 2;
a := b;
endif
if m < 1 then
d =y * x;
else
d :=x - 2;
endif
w :=a / r;
u :=Db / r;
t :=d / r;
if m > 1 then
c =y * x;
else
c =X — 2;
endif
z :=c¢c / r;
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The example, in SSA form

y :=p + d;
if m > 1 then

a; =y * x; by 1= a;;
else

by, := x - 2; a, := by;
as := 0(aj,aj);

by = ¢(by,by);
if m < 1 then
d, =y * x;

d, := x - 2;
ds := ¢(dy,dy);
w = a3 / r;

= by / r;

t :=ds / r;
if m > 1 then

cp =y * X;
else

C3 =X - 2;
¢(C1102);

z 1= c3 / r;

C3
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An improvement

¢-functions were treated poorly
» impure, since don’t know when they’re the same

» even if they have the same operands
and are in the same control equivalent region!

Fix: give them an additional input: the selector value
(now called select nodes, sometimes written as )

* e.g., a boolean, for a 2-input ¢
* e.g., aninteger, for an n-input ¢

¢-functions now are pure!

Craig Chambers 137

CSE 501

Value dependence graphs

[Weise, Crew, Ernst, & Steensgaard, POPL 94]

Idea: represent all dependences,
including control dependences, as data dependences

+ simple, direct dataflow-based representation
of all “interesting” relationships

» analyses become easier to describe & reason about
— harder to sequentialize into CFG

Control dependences as data dependences:
+ control dependence on order of side-effects
= data dependence on reading & writing to global Store

+ optimizations to break up accesses to single Store into separate
independent chunks
(e.g. a single variable, a single data structure)

« control dependence on outcome of branch
= a select node, taking test, then, and else inputs
= demand-driven evaluation model

Loops implemented as tail-recursive calls to local procedures

Apply CSE, folding, etc. as nodes are built/updated
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Example, after store splitting

y =Pt g;

if x > 0 then a := x * y else a 1=y - 2;
w =y / d;

if x > 0 then b := 1 << w;

r := a
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Sequentialization

How to generate code from a soup of operators and edges?
Need to sequentialize back into a regular CFG

Must find an ordering that respects dependences
(data and control)

Hard with arbitrary graph

+ can get cycles with full PDG, VDG transforms
* may need to duplicate code to get a legal schedule
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Sequentialization via placement

A solution, due to Click: treat as placement problem
— limits transformations/optimizations possible
+ simpler to implement

Start from original (empty) CFG

Goal: assign each operation to
the least-frequently-executed basic block
that respects its data dependences

+ ¢-nodes tied to their original merge point

Hoist operations out of loops where possible
Push operations into conditionals where possible
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Example

i = 0;
while do
x =1 * Db;
if then
w = cCc * c;
Yy 1= X + W;
else
y = 9;
end
print(y);
i =1+ 1;
end
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Example, in SSA form

i, = 0;
while ... do
iy 1= O0(iy, 1,);
X = i3 * Db;
if ... then
w = c * c;
y1 = x + w;
else
yo = 9;
end
vy = 0(y1, v2)i
print(ys);
i, =15 + 1;
end
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