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Abstract
We address the problem of automatically generating invariants
with quantified and boolean structure for proving the validity of
given assertions or generating pre-conditions under which the as-
sertions are valid. We present three novel algorithms, having dif-
ferent strengths, that combine template and predicate abstraction
based formalisms to discover required sophisticated program in-
variants using SMT solvers.

Two of these algorithms use an iterative approach to compute
fixed-points (one computes a least fixed-point and the other com-
putes a greatest fixed-point), while the third algorithm uses a con-
straint based approach to encode the fixed-point. The key idea in all
these algorithms is to reduce the problem of invariant discovery to
that of finding optimal solutions for unknowns (over conjunctions
of some predicates from a given set) in a template formula such that
the formula is valid.

Preliminary experiments using our implementation of these al-
gorithms show encouraging results over a benchmark of small but
complicated programs. Our algorithms can verify program proper-
ties that, to our knowledge, have not been automatically verified
before. In particular, our algorithms can generate full correctness
proofs for sorting algorithms (which requires nested universally-
existentially quantified invariants) and can also generate precondi-
tions required to establish worst-case upper bounds of sorting algo-
rithms. Furthermore, for the case of previously considered proper-
ties, in particular sortedness in sorting algorithms, our algorithms
take less time than reported by previous techniques.

Categories and Subject Descriptors F.3.1 [Logics and Mean-
ings of Programs]: Specifying and Verifying and Reasoning about
Programs—Invariants, Logics of Programs, Mechanical Verifica-
tion, Pre- and Post-conditions; F.3.2 [Logics and Meanings of Pro-
grams]: Semantics of Programming Languages—Program Analy-
sis; D.2.4 [Software Engineering]: Software/Program Verification—
Correctness Proofs, Formal Methods
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1. Introduction
There has been a traditional trade-off between automation and pre-
cision for the task of program verification. At one end of the spec-
trum, we have fully automated techniques like data-flow analy-
sis [19], abstract interpretation [5] and model checking [8] that can
perform iterative fixed-point computation over loops, but are lim-
ited in the kind of invariants that they can discover. At the other end,
we have approaches based on verification condition generation that
can be used to establish sophisticated properties of a program us-
ing SMT solvers [25, 32], but require the programmer to provide
all the sophisticated properties along with loop invariants, which
are usually even more sophisticated. The former approach enjoys
the benefit of complete automation, while the latter approach en-
joys the benefit of leveraging the engineering and state-of-the-art
advances that are continually being made in SMT solvers. In this
paper, we explore the middle ground, wherein we show how to
use SMT solvers as black-boxes to discover sophisticated induc-
tive loop invariants, using only a little help from the programmer in
the form of templates and predicates.

We take inspiration from recent work on template-based pro-
gram analysis [26, 27, 4, 18, 1, 13, 12, 14] that has shown
promise in discovering invariants that are beyond the reach of fully-
automated techniques. The programmer provides hints in the form
of a set of invariant templates with holes/unknowns that are then
automatically filled in by the analysis. However, most of existing
work in this area has focused on quantifier-free numerical invari-
ants and depends on specialized non-linear solvers to find solutions
to the unknowns. In contrast, we focus on invariants that are useful
for a more general class of programs. In particular, we consider in-
variants with arbitrary but pre-specified logical structure (involving
disjunctions and universal and existential quantifiers) over a given
set of predicates. One of the key features of our template-based
approach is that it uses the standard interface to an SMT solver, al-
lowing it to go beyond numerical properties and leverage ongoing
advances in SMT solving.

Our templates consist of formulas with arbitrary logical struc-
ture (quantifiers, boolean connectives) and unknowns that take val-
ues over some conjunction of a given set of predicates (Section 2).
Such a choice of templates puts our work in an unexplored space
in the area of predicate abstraction, which has been highly success-
ful in expressing useful non-numerical and disjunctive properties
of programs. The area was pioneered by Graf and Seı̈di [10], who
showed how to compute quantifier-free invariants (over a given set
of predicates). Later, strategies were proposed to discover univer-
sally quantified invariants [9, 21, 17] and disjunctions of univer-
sally quantified invariants in the context of shape analysis [22]. Our
work extends the field by discovering invariants that involve an ar-
bitrary (but pre-specified) quantified structure over a given set of
predicates. Since the domain is finite, one can potentially search
over all possible solutions, but this naive approach would be infea-
sible.
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(a) InsertionSort(Array A, int n)
1 i := 1;
2 while (i < n)
3 j := i− 1; val := A[i];
4 while (j ≥ 0 ∧A[j] > val)
5 A[j + 1] := A[j];
6 j := j − 1;
7 A[j + 1] := val;
8 i := i + 1;
9 Assert(∀y∃x : (0 ≤ y < n)

10 ⇒ (Ã[y] = A[x] ∧ 0 ≤ x < n))

User Input:
Invariant Template: v1 ∧ (∀y : v2 ⇒ v3) ∧ (∀y∃x : v4 ⇒ v5)
Predicate Set: AllPreds({x, y, i, j, n}, {0,±1}, {≤,≥, 6=}) ∪

AllPreds({val, A[t], Ã[t] | t ∈ {i, j, x, y, n}}, {0}, {=})

Tool Output: Proof of validity of assertion:
Outer Loop Invariant:
∀y : (i ≤ y < n) ⇒ (Ã[y] = A[y]) ∧
∀y∃x : (0 ≤ y < i) ⇒ (Ã[y] = A[x] ∧ 0 ≤ x < i)

Inner Loop Invariant:
val = Ã[i] ∧ −1 ≤ j < i ∧
∀y : (i < y < n) ⇒ Ã[y] = A[y] ∧
∀y∃x : (0 ≤ y < i) ⇒ (Ã[y] = A[x] ∧ 0 ≤ x ≤ i ∧ x 6= j + 1)

(b) SelectionSort(Array A, int n)
1 i := 0;
2 while (i < n− 1)
3 min := i; j := i + 1;
4 while (j < n)
5 if (A[j] < A[min]) min := j;
6 j := j + 1;
7 Assert(i 6= min);
8 if (i 6= min) swap A[i] and A[min];
9 i := i + 1;

User Input:
Invariant Template: v0 ∧ (∀k : v1 ⇒ v2)∧ (∀k : v3 ⇒ v4)∧ (∀k1, k2 : v5 ⇒ v6)
Predicate Set: AllPreds({k, k1, k2, i, j, min, n}, {0, 1}, {≤,≥, >}) ∪

AllPreds({A[t] | t ∈ {k, k1, k2, i, j, min, n}}, {0, 1}, {≤,≥})

Tool Output: Assertion valid under following precondition.
Precondition Required:
∀k : (0 ≤ k < n− 1) ⇒ A[n− 1] < A[k]
∀k1, k2 : (0 ≤ k1 < k2 < n− 1) ⇒ A[k1] < A[k2]

Outer Loop Invariant:
∀k1, k2 : (i ≤ k1 < k2 < n− 1) ⇒ A[k1] < A[k2]
∀k : i ≤ k < n− 1 ⇒ A[n− 1] < A[k]

Inner Loop Invariant:
∀k1, k2 : (i ≤ k1 < k2 < n− 1) ⇒ A[k1] < A[k2]
∀k : (i ≤ k < n− 1) ⇒ A[n− 1] < A[k]
j > i ∧ i < n− 1 ∧ ∀k : (i ≤ k < j) ⇒ A[min] ≤ A[k]

Figure 1. (a) Verifying that Insertion Sort preserves all its input elements (b) Generating a precondition under which Selection Sort exhibits
its worst-case number of swaps. (For any set of program variables Z, any constants C and any relational operators R, we use the notation
AllPreds(Z,C,R) to denote the set of predicates {z − z′ op c, z op c | z, z′ ∈ Z, c ∈ C, op ∈ R}.)

We therefore present three novel algorithms for efficiently dis-
covering inductive loop invariants that prove the validity of asser-
tions in a program, given a suitable set of invariant templates and
a set of predicates. Two of these algorithms use standard iterative
techniques for computing fixed-point as in data-flow analysis or ab-
stract interpretation. One of them performs a forward propagation
of facts and computes a least fixed-point, and then checks whether
the facts discovered imply the assertion or not (Section 4.1). The
other algorithm performs a backward propagation of facts starting
from the given assertion and checks whether the precondition dis-
covered is true or not (Section 4.2). The third algorithm uses a
constraint-based approach to encode the fixed-point as a SAT for-
mula such that a satisfying assignment to the SAT formula maps
back to a proof of validity for the assertion (Section 5). The worst-
case complexity of these algorithms is exponential only in the max-
imum number of unknowns at two neighboring points as opposed to
being exponential in the total number of unknowns at all program
points for the naive approach. Additionally, in practice we have
found them to be efficient and having complementary strengths
(Section 7).

The key operation in these algorithms is that of finding optimal
solutions for unknowns in a template formula such that the formula
is valid (Section 3). The unknowns take values that are conjunc-
tions of some predicates from a given set of predicates, and can be
classified as either positive or negative depending on whether re-
placing them by a stronger or weaker set of predicates makes the
formula stronger or weaker respectively. We describe an efficient,
systematic, search process for finding optimal solutions to these un-
knowns. Our search process uses the observation that a solution for
a positive (or negative) unknown remains a solution upon addition
(or deletion) of more predicates.

One of the key aspects of our algorithms is that they can be eas-
ily extended to discover maximally-weak preconditions1 that ensure

1 A precondition is maximally-weak if no other strictly weaker precondition
exists in the template that also ensures the validity of the assertions.

validity of given assertions. This is unlike most invariant gener-
ation tools that cannot be easily extended to generate (weak) pre-
conditions. Automatic precondition generation not only reduces the
annotation burden on the programmer in the usual case, but can also
help identify preconditions that are not otherwise intuitive.

This paper makes the following contributions:

• We present a template based formalism to discover invariants
with arbitrary (but pre-specified) logical structure over a given
set of predicates.

• We present three novel fixed-point computation algorithms,
each having different strengths, given a set of templates and
predicates. Two iteratively propagate facts and one encodes the
fixed-point as a constraint.

• We show how to generate maximally-weak preconditions for
ensuring the validity of assertions that hold only under certain
preconditions.

• We present preliminary experimental evidence that these algo-
rithms can verify (using off-the-shelf SMT solvers) program
properties not automatically verified before. They also take less
time than previously reported for properties analyzed before by
alternate techniques. We also compare the properties of our al-
gorithms against each other.

1.1 Motivating Examples
Checking Validity of Assertions Consider, for example, the in-
place InsertionSort routine in Figure 1(a) that sorts an array
A of length n. The assertion at Line 9 asserts that no elements
in array A are lost, i.e., the array A at the end of the procedure
contains all elements from array Ã, where Ã refers to the state of
array A at the beginning of the procedure. The assertion as well as
the loop invariants required to prove it are ∀∃ quantified, and we
do not know of any automated tool that can automatically discover
such invariants for array programs.

In this case, the user can easily guess that the loop invariants
would require a ∀∃ structure to prove the assertion on Line 9. Ad-
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ditionally, the user needs to guess that an inductive loop invariant
may require a ∀ fact (to capture some fact about array elements) and
a quantified-free fact relating non-array variables. The quantified
facts contain an implication as is there in the final assertion. The
user also needs to provide the set of predicates. In this case, the set
consisting of inequality and disequality comparisons between terms
(variables and array elements that are indexed by some variable) of
appropriate types suffices. This choice of predicates is quite natural
and has been used in several works based on predicate abstraction.
Given these user inputs, our tool then automatically discovers the
non-trivial loop invariants mentioned in the figure.

Our tool eases the task of validating the assertion by requiring
the user to only provide a template in which the logical structure
has been made explicit, and provide some over-approximation of
the set of predicates. Guessing the template is a much easier task
than providing the precise loop invariants, primarily because these
templates are usually uniform across the program and depend on
the kind of properties to be proved.

Precondition Generation Consider, for example, the in-place
SelectionSort routine in Figure 1(b) that sorts an array A of
length n. Using bound analysis [11], it is possible to prove that the
worst-case number of array swaps for this example is n−1. On the
other hand, suppose we want to verify that the worst-case number
of swaps, n − 1, can indeed be achieved by some input instance.
This problem can be reduced to the problem of validating the as-
sertion at Line 7. If the assertion holds then the swap on Line 8 is
always executed, which is n − 1 times. However, this assertion
is not valid without an appropriate precondition (e.g., consider a
fully sorted array when the swap happens in no iteration). We want
to generate a precondition that does not impose any constraints on
n while allowing the assertion to be valid—this would provide a
proof that SelectionSort indeed admits a worst-case of n − 1
array swaps.

In this case, the user can easily guess that a quantified fact
(∀k1, k2 that compares the elements at locations k1 and k2) cap-
turing some sortedness property will be required. However, this
alone is not sufficient. The user can then iteratively guess and add
templates until a precondition is found. (The process can probably
be automated.) Two additional quantified facts and an unquantified
fact suffice in this case. The user also supplies a predicate set con-
sisting of inequality and disequality comparisons between terms of
appropriate type. The non-trivial output of our tool is shown in the
figure.

Our tool automatically infers the maximally-weak precondition
that the input array should be sorted from A[0] to A[n − 2],
while the last entry A[n − 1] contains the smallest element. Other
sorting programs exhibit their worst-case behaviors usually when
the array is reverse-sorted (For selection sort, a reverse sorted array
is not the worst case; it incurs only n

2
swaps!). By automatically

generating this non-intuitive maximally-weak precondition our tool
provides a significant insight about the algorithm and reduces the
programmer’s burden.

2. Notation
We often use a set of predicates in place of a formula to mean
the conjunction of the predicates in the set. In our examples, we
often use predicates that are inequalities between a given set of
variables or constants. For some subset V of the variables, we use
the notationQV to denote the set of predicates {v1 ≤ v2 | v1, v2 ∈
V }. Also, for any subset V of variables, and any variable j, we
use the notation Qj,V to denote the set of predicates {j < v, j ≤
v, j > v, j ≥ v | v ∈ V }.

2.1 Templates
A template τ is a formula over unknown variables vi that take
values over (conjunctions of predicates in) some subset of a given
set of predicates. We consider the following language of templates:

τ ::= v | ¬τ | τ1 ∨ τ2 | τ1 ∧ τ2 | ∃x : τ | ∀x : τ

We denote the set of unknown variables in a template τ by U(τ).
We say that an unknown v ∈ U(τ) in template τ is a positive
(or negative) unknown if τ is monotonically stronger (or weaker
respectively) in v. More formally, let v be some unknown variable
in U(τ). Let σv be any substitution that maps all unknown variables
v′ in U(τ) that are different from v to some set of predicates. Let
Q1, Q2 ⊆ Q(v). Then, v is a positive unknown if

∀σv, Q1, Q2 : (Q1 ⇒ Q2) ⇒ (τσv[v 7→ Q2] ⇒ τσv[v 7→ Q1])

Similarly, v is a negative unknown if

∀σv, Q1, Q2 : (Q1 ⇒ Q2) ⇒ (τσv[v 7→ Q1] ⇒ τσv[v 7→ Q2])

We use the notation U+(τ) and U−(τ) to denote the set of all
positive unknowns and negative unknowns respectively in τ .

If each unknown variable in a template/formula occurs only
once, then it can be shown that each unknown is either positive or
negative. In that case, the sets U+(τ) and U−(τ) can be computed
using structural decomposition of τ as follows:

U
+

(v) = {v}

U
+

(¬τ) = U
−

(τ)

U
+

(τ1 ∧ τ2) = U
+

(τ1) ∪ U
+

(τ2)

U
+

(τ1 ∨ τ2) = U
+

(τ1) ∪ U
+

(τ2)

U
+

(∀X : τ) = U
+

(τ)

U
+

(∃X : τ) = U
+

(τ)

U
−

(v) = ∅

U
−

(¬τ) = U
+

(τ)

U
−

(τ1 ∧ τ2) = U
−

(τ1) ∪ U
−

(τ2)

U
−

(τ1 ∨ τ2) = U
−

(τ1) ∪ U
−

(τ2)

U
−

(∀X : τ) = U
−

(τ)

U
−

(∃X : τ) = U
−

(τ)

EXAMPLE 1. Consider the following template τ with unknown
variables v1, . . , v5.

(v1 ∧ (∀j : v2 ⇒ sel(A, j) ≤ sel(B, j)) ∧
(∀j : v3 ⇒ sel(B, j) ≤ sel(C, j))) ⇒

(v4 ∧ (∀j : v5 ⇒ sel(A, j) ≤ sel(C, j)))

Then, U+(τ) = {v2, v3, v4} and U−(τ) = {v1, v5}.

2.2 Program Model
We assume that a program Prog consists of the following kind of
statements s (besides the control-flow).

s ::= x := e | assert(φ) | assume(φ)

In the above, x denotes a variable and e denotes some expres-
sion. Memory reads and writes can be modeled using memory vari-
ables and select/update expressions. Since we allow assume state-
ments, without loss of any generality, we can treat all conditionals
in the program as non-deterministic.

We now set up a formalism in which different templates can be
associated with different program points, and different unknowns
in templates can take values from different sets of predicates. Let
C be some cut-set of the program Prog. (A cut-set of a program
is a set of program points, called cut-points, such that any cyclic
path in Prog passes through some cut-point.) Every cut-point in C
is labeled with an invariant template. For simplicity, we assume
that C also consists of program entry and exit locations, which
are labeled with an invariant template that is simply true. Let
Paths(Prog) denote the set of all tuples (δ, τ1, τ2, σt), where δ
is some straight-line path between two cut-points from C that are
labeled with invariant templates τ1 and τ2 respectively. Without
loss of any generality, we assume that each program path δ is in
static single assignment (SSA) form, and the variables that are live
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at start of path δ are the original program variables, and the SSA
versions of the variables that are live at the end of δ are given by
the mapping σt, while σ−1

t denotes the reverse mapping.
We use the notation U(Prog) to denote the set of unknown

variables in the invariant templates at all cut-points of Prog.

EXAMPLE 2. Consider the following program ArrayInit (used
as a running example) that initializes all array elements to 0.

ArrayInit(Array A, int n)
1 i := 0;
2 while (i < n)
3 A[i] := 0;
4 i := i+ 1;
5 Assert(∀j : 0 ≤ j < n⇒ sel(A, j) = 0);

Consider the cut-set C for program ArrayInit that consists of
only the program location 2 besides the entry and exit locations.
Let the program location 2 be labeled with the invariant template
∀j : v ⇒ sel(A, j) = 0, which has one negative unknown v.
Then, Paths(ArrayInit) consists of the following tuples.

Entry Case (i := 0, true, ∀j : v ⇒ sel(A, j) = 0, σt), where
σt is the identity map.

Exit Case (assume(i ≥ n), ∀j : v ⇒ sel(A, j) = 0, ∀j : 0 ≤
j < n⇒ sel(A, j) = 0, σt), where σt is the identity map.

Inductive Case (assume(i < n);A′ := upd(A, i, 0); i′ :=
i + 1, ∀j : v ⇒ sel(A, j) = 0, ∀j : v ⇒ sel(A′, j) = 0, σt),
where σt(i) = i′, σt(A) = A′.

2.3 Invariant Solution
The verification condition of any straight-line path δ (a sequence
of statements s) in SSA form between two program points labeled
with invariant templates τ1 and τ2 is given by

VC(〈τ1, δ, τ2〉) = τ1 ⇒ WP(δ, τ2)

where the weakest precondition WP(δ, φ) of formula φ with respect
to path δ is as follows:

WP(skip, φ) = φ

WP(s1; s2, φ) = WP(s1, WP(s2, φ))

WP(assert(φ′), φ) = φ′ ∧ φ
WP(assume(φ′), φ) = φ′ ⇒ φ

WP(x := e, φ) = (x = e) ⇒ φ (1)

Observe that the correctness of Eq. 1 in the definition of the weakest
precondition above relies on the fact that the statements on path δ
are in SSA form. (Note that it is important for the path δ to be
in SSA form since otherwise we will have to address the issue of
substitution in templates, as the only choice for WP(x := e, φ) when
the path δ is in non-SSA form would be φ[e/x].

DEFINITION 1 (Invariant Solution). Let Q be a predicate-map
that maps each unknown v in any template invariant in program
Prog to some set of predicates Q(v). Let σ map each unknown v
in any template invariant in program Prog to some subset of Q(v).
We say that σ is an invariant solution for Prog overQ if the follow-
ing formula VC(Prog, σ), which denotes the verification condition
of the program Prog w.r.t. σ, is valid.

VC(Prog, σ)
def
=

∧
(δ,τ1,τ2,σt)∈Paths(Prog)

VC(〈τ1σ, δ, τ2σσt〉)

EXAMPLE 3. Consider the program ArrayInit described in Ex-
ample 2. Let Q map unknown v in the invariant template at cut-
point location 2 to Qj,{0,i,j}. Let σ map v to Q0 = {0 ≤
j, j < i}. Then, σ is an invariant solution for ArrayInit over Q

since the verification condition VC(ArrayInit, σ) of the program
ArrayInit, which is given by the conjunction of the following for-
mulas, is valid.

• i = 0 ⇒ (∀j : Q0 ⇒ sel(A, j) = 0)
• (i ≥ n ∧ (∀j : Q0 ⇒ sel(A, j) = 0)) ⇒

(∀j : 0 ≤ j ≤ n⇒ sel(A, j) = 0)
• (i < n ∧ A′ = upd(A, i, 0) ∧ i′ = i+ 1 ∧

(∀j : Q0 ⇒ sel(A, j) = 0)) ⇒
(∀j : Q0σt ⇒ sel(A′, j) = 0)

where σt(i) = i′ and σt(A) = A′.

Sections 4 and 5 describe algorithms for generating an invariant
solution given program Prog and an appropriate predicate-map Q.

3. Optimal Solutions
In this section, we present the core operation of generating an
optimal solution that is used by our algorithm to perform local
reasoning about program paths (which are encoded as formulae).
Separating local reasoning from fixed-point computation (that we
address later) is essential because it is not possible, in general, to
encode a program with loops as a single SMT constraint.

DEFINITION 2 (Optimal Solution). Let φ be a formula with un-
knowns {vi}i where each vi is either positive or negative. Let Q
map each unknown vi to some set of predicates Q(vi). A map
{vi 7→ Qi}i is a solution (for φ over domain Q) if the formula
φ is valid after each vi is replaced byQi, andQi ⊆ Q(vi). A solu-
tion {vi 7→ Qi}i is optimal if replacing Qi by a strictly weaker or
stronger subset of predicates from Q(vi), depending on whether vi

is negative or positive, results in a map that is no longer a solution.

EXAMPLE 4. Consider the following formula φ with one negative
unknown η.

i = 0 ⇒ (∀j : η ⇒ sel(A, j) = 0)

LetQ(η) beQj,{0,i,n}. There are four optimal solutions for φ over
Q. These map the negative unknown variable η to {0 < j ≤ i},
{0 ≤ j < i}, {i < j ≤ 0}, and {i ≤ j < 0} respectively.

Since the naive exponential search for optimal solutions to a
formula would be too expensive, here we present a systematic
search, that we found to be efficient in practice.

The procedure described in Figure 2 returns the set of all opti-
mal solutions for an input formula φ over domain Q. It makes use
of an operation OptimalNegativeSolutions(φ,Q) (discussed
later) that returns the set of all optimal solutions for the special
case when φ consists of only negative unknowns. To understand
how the procedure OptimalSolutions operates, it is illustrative
to think of the simple case when there is only one positive variable
ρ. In this case, the algorithm simply returns the conjunction of all
those predicates q ∈ Q(ρ) such that φ[ρ 7→ {q}] is valid. Observe
that such a solution is an optimal solution, and this procedure is
much more efficient than naively trying out all possible subsets and
picking the maximal ones.

EXAMPLE 5. Consider the following formula φ with one positive
unknown ρ.

(i ≥ n) ∧ (∀j : ρ⇒ sel(A, j) = 0)) ⇒
(∀j : 0 ≤ j < n⇒ sel(A, j) = 0)

LetQ(ρ) beQj,{0,i,n}. There is one optimal solution for φ overQ,
namely

ρ 7→ {0 ≤ j, j < n, j < i}
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OptimalSolutions(φ, Q)
1 Let U+(φ) be {ρ1, . . , ρa}.
2 Let U−(φ) be {η1, . . , ηb}.
3 S := ∅;
4 foreach 〈q1, . . , qa〉 ∈ Q(ρ1)× . .×Q(ρa):
5 φ′ := φ[ρi 7→ {qi}]i;
6 T := OptimalNegativeSolutions(φ′, Q);
7 S := S ∪ {σ | σ(ρi) = {qi}, σ(ηi) = t(ηi), t ∈ T};
8 R := {MakeOptimal(σ, S) | σ ∈ S};
9 while any change in R:

10 foreach σ1, σ2 ∈ R
11 σ := Merge(σ1, σ2, S); if (σ = ⊥) continue;

12 if 6 ∃σ′ ∈ R :
a∧

i=1
σ′(ρi) ⇒ σ(ρi) ∧

b∧
i=1

σ(ηi) ⇒ σ′(ηi)

13 R := R ∪ {MakeOptimal(σ, S)};
14 return R;

MakeOptimal(σ, S)

1 T := {σ′ | σ′ ∈ S ∧
b∧

i=1
σ(ηi) ⇒ σ′(ηi)}

2 foreach σ′ ∈ T:
3 σ′′ := Merge(σ, σ′, S)
4 if (σ′′ 6= ⊥) σ := σ′′;
5 return σ
Merge(σ1, σ2, S)

1 Let σ be s.t. σ(ρi) = σ1(ρi) ∪ σ2(ρi) for i = 1 to a
2 and σ(ηi) = σ1(ηi) ∪ σ2(ηi) for i = 1 to b

3 T := {σ′ | σ′ ∈ S ∧
b∧

i=1
σ(ηi) ⇒ σ′(ηi)}

4 if
∧

q1∈σ(ρ1),..,qa∈σ(ρa)

∃σ′ ∈ T s.t.
a∧

i=1
σ′(ρi) = {qi} return σ

5 else return ⊥

Figure 2. Procedure for generating optimal solutions given a template formula φ and a predicate-map Q.

This is computed by the algorithm in Figure 2 as follows. At the end
of the first loop (Lines 4-7), the set S contains three solutions:

1: ρ 7→ {0 ≤ j} 2: ρ 7→ {j < n} 3: ρ 7→ {j < i}
The set R at the end of line 8 contains only one optimal solution:

ρ 7→ {0 ≤ j, j < n, j < i}
The set R is unchanged by second loop (Lines 9-13), simply be-
cause it contains only one optimal solution, while any change to R
would require R to contain at least two optimal solutions.

Now, consider the case, of one positive and one negative vari-
able. In this case, the algorithm invokes OptimalNegativeSolut-
ions to find an optimal set of negative solutions for the negative
variable η, for each choice of predicate q ∈ Q(ρ) for the posi-
tive variable ρ and stores these solutions in set S (Lines 4-7). After
this, it groups together all those solutions in S that match on the
negative variable to generate a set R of optimal solutions (Line 8).
(Recall, from Defn 2, that in an optimal solution a positive variable
is mapped to a maximal set of predicates, while a negative variable
is mapped to a minimal set.) It then attempts to generate more op-
timal solutions by merging the solutions for both the positive and
negative variables of the optimal solutions in R (Lines 9-13).

EXAMPLE 6. Consider the following formula φ with one positive
unknown ρ and one negative unknown η.

(η ∧ (i ≥ n) ∧ (∀j : ρ⇒ sel(A, j) = 0)) ⇒
(∀j : j ≤ m⇒ sel(A, j) = 0)

Let Q(η) and Q(ρ) both be Q{i,j,n,m}. There are three optimal
solutions for φ over Q, namely

1: ρ 7→ {j ≤ m} , η 7→ ∅
2: ρ 7→ {j ≤ n, j ≤ m, j ≤ i}, η 7→ {m ≤ n}
3: ρ 7→ {j ≤ i, j ≤ m} , η 7→ {m ≤ i}

These are computed by the algorithm in Figure 2 as follows. At the
end of the first loop (Lines 4-7), the set S contains the following
four solutions:

1: ρ 7→ {j ≤ m}, η 7→ ∅
2: ρ 7→ {j ≤ n} , η 7→ {m ≤ n}
3: ρ 7→ {j ≤ i} , η 7→ {m ≤ i}
4: ρ 7→ {j ≤ i} , η 7→ {m ≤ n}

The set R at the end of line 8 contains the following three optimal
solutions:

1: ρ 7→ {j ≤ m} , η 7→ ∅
2: ρ 7→ {j ≤ n, j ≤ m, j ≤ i}, η 7→ {m ≤ n}
3: ρ 7→ {j ≤ i, j ≤ m} , η 7→ {m ≤ i}

The set R is unchanged by second loop (Lines 9-13).

The extension to multiple positive variables involves considering a
choice of all tuples of predicates of appropriate size (Line 4), while
the extension to multiple negative variables is not very different.

OptimalNegativeSolutions This operation requires perform-
ing theory based reasoning over predicates, for which we use
an SMT solver as a black box. Of several ways to implement
OptimalNegativeSolutions, we found it effective to implement
OptimalNegativeSolutions(φ,Q) as a breadth first search on
the lattice of subsets ordered by implication with > and ⊥ being ∅
and the set of all predicates, respectively. We start at > and keep
deleting the subtree of every solution discovered until no more el-
ements remain to be searched. Furthermore, to achieve efficiency,
one can truncate the search at a certain depth. (We observed that the
number of predicates mapped to a negative variable in any optimal
solution in our experiments was never greater than 4.) To achieve
completeness, the bounding depth can be increased iteratively after
a failed attempt.

4. Iterative Propagation Based Algorithms
In this section, we present two iterative propagation based algo-
rithms for discovering an inductive invariant that establishes the
validity of assertions in a given program.

The key insight behind these algorithms is as follows. Observe
that the set of elements that are instantiations of a given template
with respect to a given set of predicates, ordered by implication,
forms a pre-order, but not a lattice. Our algorithms performs a
standard data-flow analysis over the powerset extension of this
abstract domain (which forms a lattice) to ensure that it does not
miss any solution. Experimental evidence shows that the number
of elements in this powerset extension never gets beyond 6. Each
step involves updating a fact at a cut-point by using the facts
at the neighboring cut-points (preceding/succeeding cut-points in
case of forward/backward data-flow respectively). The update is
done by generating the verification condition that relates the facts
at the neighboring cut-points with the template at the current cut-
point, and updating using the solutions obtained from a call to
OptimalSolutions.

The two algorithms differ in whether they perform a forward
or backward dataflow and accordingly end up computing a least or
greatest fixed point respectively, but they both have the following
property.

THEOREM 1. Given a program Prog and a predicate map Q, the
algorithms in Figure 3 output an invariant solution, if there exists
one.
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LeastFixedPoint(Prog, Q)
1 Let σ0 be s.t. σ0(v) 7→ ∅, if v is negative

σ0(v) 7→ Q(v), if v is positive
2 S := {σ0};
3 while S 6= ∅ ∧ ∀σ ∈ S : ¬Valid(VC(Prog, σ))
4 Choose σ ∈ S, (δ, τ1, τ2, σt) ∈ Paths(Prog) s.t.

¬Valid(VC(〈τ1σ, δ, τ2σσt〉))
5 S := S − {σ};
6 Let σp = σ | U(Prog)−U(τ2) and θ := τ2σ ⇒ τ2.

7 S := S ∪ {σ′σ−1
t ∪ σp |

σ′ ∈ OptimalSolutions(VC(〈τ1σ, δ, τ2〉) ∧ θ, Qσt)}
8 if S = ∅ return ‘‘No solution’’
9 else return σ ∈ S s.t. Valid(VC(Prog, σ))

GreatestFixedPoint(Prog)
1 Let σ0 be s.t. σ0(v) 7→ Q(v), if v is negative

σ0(v) 7→ ∅, if v is positive
2 S := {σ0};
3 while S 6= ∅ ∧ ∀σ ∈ S : ¬Valid(VC(Prog, σ))
4 Choose σ ∈ S, (δ, τ1, τ2, σt) ∈ Paths(Prog) s.t.

¬Valid(VC(〈τ1σ, δ, τ2σσt〉))
5 S := S − {σ};
6 Let σp = σ | U(Prog)−U(τ1) and θ := τ1 ⇒ τ1σ.
7 S := S ∪ {σ′ ∪ σp |

σ′ ∈ OptimalSolutions(VC(〈τ1, δ, τ2σσt〉) ∧ θ, Q)}
8 if S = ∅ return ‘‘No solution’’
9 else return σ ∈ S s.t. Valid(VC(Prog, σ))

(a) Least Fixed Point Computation (b) Greatest Fixed Point Computation

Figure 3. Iterative Algorithms for generating an invariant solution given program Prog and predicate-map Q.

For notational convenience, we present the algorithms slightly
differently. Each of these algorithms (described in Figure 3) in-
volve maintaining a set of candidate-solutions at each step. A
candidate-solution σ is a map of the unknowns v in all tem-
plates to some subset of Q(v), where Q is the given predicate-
map. The algorithms make progress by choosing a candidate-
solution, and replacing it by a set of weaker or stronger candidate-
solutions (depending on whether a forward/least fixed-point or
backward/greatest fixed-point technique is used) using the oper-
ation OptimalSolutions defined in Section 3. The algorithms
return an invariant solution whenever any candidate solution σ
becomes one (i.e., Valid(VC(Prog, σ))), or fail when the set of
candidate-solutions becomes empty. We next discuss the two spe-
cific variants along with an example.

4.1 Least Fixed-point
This algorithm (Figure 3(a)) starts with the singleton set contain-
ing the candidate solution that maps each negative unknown to
the empty set (i.e., true) and each positive unknown to the set
of all predicates. In each step, the algorithm chooses a σ, which
is not an invariant solution. It must be the case that there exists
(δ, τ1, τ2, σt) ∈ Paths(Prog) such that VC(〈τ1σ, δ, τ2σσt〉) is not
valid. Furthermore, this is because τ2σ is a too strong instantiation
for τ2. The algorithm replaces the candidate solution σ by the so-
lutions {σ′σ−1

t ∪ σp |σ′∈OptimalSolutions(VC(〈τ1σ, δ, τ2〉)∧
θ,Qσt)}, where σp is the projection of the map σ onto the un-
knowns in the set U(Prog) − U(τ2) and θ (defined as τ2σ ⇒ τ2)
ensures that only stronger solutions are considered.

EXAMPLE 7. Consider the ArrayInit program from Example 2.
Let Q(v) = Qj,{0,i,n}. In the first iteration of the while loop,
S is initialized to σ0, and in Line 4 there is only one triple in
Paths(ArrayInit) whose corresponding verification condition is
inconsistent, namely (i := 0, true, ∀j : v ⇒ sel(A, j) =
0, σt), where σt is the identity map. Line 7 results in a call to
OptimalSolutions on the formula φ = (i = 0) ⇒ (∀j :
v ⇒ sel(A, j) = 0), the result of which has already been shown
in Example 4. The set S now contains the following candidate
solutions after the first iteration of the while loop.

1: v 7→ {0 < j ≤ i} 2: v 7→ {0 ≤ j < i}
3: v 7→ {i < j ≤ 0} 4: v 7→ {i ≤ j < 0}

Of these, the candidate-solution v 7→ {0 ≤ j < i} is a valid
solution and hence the while loop terminates after one iteration.

4.2 Greatest Fixed-point
This algorithm (Figure 3(b)) starts with the singleton set contain-
ing the candidate solution that maps each positive unknown to
the empty set (i.e., true) and each negative unknown to the set

of all predicates. In each step, the algorithm chooses a σ, which
is not an invariant solution. It must be the case that there exists
(δ, τ1, τ2, σt) ∈ Paths(Prog) such that VC(〈τ1σ, δ, τ2σσt〉) is not
valid. Furthermore, this is because τ1σ is a too weak instantiation
for τ1. The algorithm replaces the candidate solution σ by the so-
lutions {σ′ ∪ σp | σ′ ∈ OptimalSolutions(VC(〈τ1, δ, τ2σσt〉)∧
θ,Q)}, where σp is the projection of the map σ onto the unknowns
in the set U(Prog) − U(τ1) and θ (defined as τ1 ⇒ τ1σ) ensures
that only weaker solutions are considered.

EXAMPLE 8. Consider the ArrayInit program from Example 2.
Let Q(v) = Qj,{0,i,n}. In the first iteration of the while loop,
S is initialized to σ0, and in Line 4 there is only one triple in
Paths(ArrayInit) whose corresponding verification condition is
inconsistent, namely (assume(i ≥ n), ∀j : v ⇒ sel(A, j) =
0, ∀j : 0 ≤ j < n ⇒ sel(A, j) = 0, σt), where σt is the identity
map. Line 7 results in a call to OptimalSolutions on the formula
φ = (i ≥ n) ∧ (∀j : v ⇒ sel(A, j) = 0) ⇒ (∀j : 0 ≤ j < n⇒
sel(A, j) = 0), whose output is shown in Example 5. This results
in S containing only the following candidate-solution after the first
iteration of the while loop.

v 7→ {0 ≤ j, j < n, j < i}
The candidate-solution v 7→ {0 ≤ j, j < n, j < i} is a valid
solution and hence the while loop terminates after one iteration.

5. Constraint Based Algorithm
In this section, we show how to encode the verification condition of
the program as a boolean formula such that a satisfying assignment
to the boolean formula corresponds to an inductive invariant that
establishes the validity of assertions in a given program.

For every unknown variable v and any predicate q ∈ Q(v), we
introduce a boolean variable bvq to denote whether or not the predi-
cate q is present in the solution for v. We show how to encode the
verification condition of the program Prog using a boolean formula
ψProg over the boolean variables bvq . The boolean formula ψProg

is constructed by making calls to the theorem proving interface
OptimalNegativeSolutions and has the following property.

THEOREM 2. The boolean formula ψProg (Eq. 2) is satisfiable iff
there exists an invariant solution for program Prog over predicate-
map Q.

5.1 Notation
Given a mapping {vi 7→ Qi}i (where Qi ⊆ Q(vi)), let BC({vi 7→
Qi}i) denote the boolean formula that constrains the unknown
variable vi to contain all predicates from Qi.

BC({vi 7→ Qi}i) =
∧

i,q∈Qi

bvi
q
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5.2 Boolean Constraint Encoding for Verification Condition
We first show how to generate the boolean constraint ψδ,τ1,τ2

that encodes the verification condition corresponding to any tuple
(δ, τ1, τ2, σt) ∈ Paths(Prog). Let τ ′2 be the template that is ob-
tained from τ2 as follows. If τ2 is different from τ1, then τ ′2 is same
as τ2, otherwise τ ′2 is obtained from τ2 by renaming all the un-
known variables to fresh unknown variables with orig denoting the
reverse mapping that maps the fresh unknown variables back to the
original. (We rename to ensure that each occurrence of an unknown
variable in the formula VC(〈τ1, δ, τ ′2〉) is unique. Note that each oc-
currence of an unknown variable in the formula VC(〈τ1, δ, τ2〉) is
not unique when τ1 and τ2 refer to the same template, which is the
case when the path δ goes around a loop).

A simple approach would be to use OptimalSolutions to
compute all valid solutions for VC(〈τ1, δ, τ ′2〉) and encode their dis-
junction. But because both τ1, τ ′2 are uninstantiated unknowns, the
number of optimal solutions explodes. We describe below an effi-
cient construction that involves only invoking OptimalNegative-
Solutions over formulae with a smaller number of unknowns (the
negative) for a small choice of predicates for the positive variables.

Let ρ1, . . , ρa be the set of positive variables and let η1, . . , ηb

be the set of negative variables in VC(〈τ1, δ, τ ′2〉). Consider any
positive variable ρi and any qj ∈ Q′(ρi), where Q′ is the map
that maps an unknown v that occurs in τ1 to Q(v) and an un-
known v that occurs in τ2 to Q(v)σt. Consider the partial map
σρi,qj that maps ρi to {qj} and ρk to ∅ for any k 6= i. Let
S

ρi,qj

δ,τ1,τ2
be the set of optimal solutions returned after invok-

ing the procedure OptimalNegativeSolutions on the formula
VC(〈τ1, δ, τ ′2〉)σρi,qj as below:

S
ρi,qj

δ,τ1,τ2
= OptimalNegativeSolutions(VC(〈τ1, δ, τ ′2〉)σρi,qj , Q

′)

Similarly, let Sδ,τ1,τ2 denote the set of optimal solutions returned
after invoking the procedure OptimalNegativeSolutions on the
formula VC(〈τ1, δ, τ ′2〉)σ, where σ is the partial map that maps ρk

to ∅ for all 1 ≤ k ≤ a.

Sδ,τ1,τ2 = OptimalNegativeSolutions(VC(〈τ1, δ, τ ′2〉)σ,Q′)
The following Boolean formula ψδ,τ1,τ2,σt encodes the verifi-

cation condition corresponding to (δ, τ1, τ2, σt).

ψδ,τ1,τ2,σt =

 ∨
{ηk 7→Qk}k∈Sδ,τ1,τ2

BC({orig(ηk) 7→ Qkσ
−1
t }k)

 ∧

∧
ρi,qj∈Q′(ρi)

borig(ρi)

qjσ−1
t

⇒
∨

{ηk 7→Qk}k∈S
ρi,qj
δ,τ1,τ2

BC({orig(ηk) 7→ Qkσ
−1
t }k)


The verification condition of the entire program is now given by

the following boolean formula ψProg that is the conjunction of the
verification condition of all tuples (δ, τ1, τ2, σt) ∈ Paths(Prog).

ψProg =
∧

(δ,τ1,τ2,σt)∈Paths(Prog)

ψδ,τ1,τ2,σt (2)

EXAMPLE 9. Consider the ArrayInit program from Example 2.
Let Q(v) = Qj,{0,i,n}. The above procedure leads to generation
of the following constraints.

Entry Case The verification condition corresponding to this case
contains one negative variable v and no positive variable. The set
Sδ,τ1,τ2 is same as the set S in Example 7, which contains 4 optimal
solutions. The following boolean formula encodes this verification
condition.

(bv0≤j ∧ bvj<i) ∨ (bv0<j ∧ bvj≤i) ∨ (bvi≤j ∧ bvj<0) ∨ (bvi<j ∧ bvj≤0) (3)

Exit Case The verification condition corresponding to this case
contains one positive variable v and no negative variable. We now
consider the set Sv,q

δ,τ1,τ2
for each q ∈ Q(v). Let P = {0 ≤ j, j <

i, j ≤ i, j < n, j ≤ n}. If v ∈ P , the set Sv,q
δ,τ1,τ2

contains the
empty mapping (i.e., the resultant formula when v is replaced by q
is valid). If v ∈ Q(v) − P , the set Sv,q

δ,τ1,τ2
is the empty-set (i.e.,

the resultant formula when v is replaced by q is not valid). The
following boolean formula encodes this verification condition.∧

q∈P

(bvq ⇒ true) ∧
∧

q∈Q(v)−P

(bvq ⇒ false)

which is equivalent to the following formula

¬bv0<j ∧ ¬bvi<j ∧ ¬bvi≤j ∧ ¬bvn<j ∧ ¬bvn≤j ∧ ¬bvj<0 ∧ ¬bvj≤0 (4)

Inductive Case The verification condition corresponding to this
case contains one positive variable v and one negative variable
v′ obtained by renaming one of the occurrences of v. Note that
Sδ,τ1,τ2 contains a singleton mapping that maps v′ to the empty-
set. Also, note that Sv,j≤i

δ,τ1,τ2
is the empty-set, and for any q ∈

Q(v′)−{j ≤ i}, Sv,q
δ,τ1,τ2

contains at least one mapping that maps
v′ to the singleton {qσt}. Hence, the following boolean formula
encodes this verification condition.

(bvj≤i ⇒ false) ∧
∧

q∈Q(v′)−{j≤i}

(
bvq ⇒ (bvq ∨ . . .)

)
which is equivalent to the formula

¬bvj≤i (5)

The boolean assignment where bv0≤j and bvj<i are set to true,
and all other boolean variables are set to false satisfies the
conjunction of the boolean constraints in Eq. 3,4, and 5. This
implies the solution {0 ≤ j, j < i} for the unknown v in the
invariant template.

6. Maximally-Weak Precondition Inference
In this section, we address the problem of discovering maximally-
weak preconditions that fit a given template and ensure that all
assertions in a program are valid.

DEFINITION 3. (Maximally-Weak Precondition) Given a program
Prog with assertions, invariant templates at each cutpoint, and a
template τe at the program entry, a solution σ for the unknowns in
the templates assigns a maximally-weak precondition to τe if

• σ is a valid solution, i.e. Valid(VC(Prog, σ)).
• For any solution σ′, it is not the case that τeσ′ is strictly weaker

than τeσ, i.e., ∀σ′ : (τeσ ⇒ τeσ
′ ∧ τeσ′ 6⇒ τeσ) ⇒

¬Valid(VC(Prog, σ′)).

The greatest fixed-point algorithm described in Section 4.2
already computes one such maximally-weak precondition. If we
change the condition of the while loop in line 3 in Figure 3(b) to
S 6= ∅ ∧ ∃σ ∈ S : ¬Valid(VC(Prog, σ′)), then S at the end of
the loop contains all maximally-weak preconditions.

The constraint based algorithm described in Section 5 is ex-
tended to generate maximally-weak preconditions using an itera-
tive process by first generating any precondition, and then encod-
ing an additional constraint that the precondition should be strictly
weaker than the precondition that was last generated, until any
such precondition can be found. The process is repeated to gener-
ate other maximally-weak preconditions by encoding an additional
constraint that the precondition should not be stronger than any pre-
viously found maximally-weak precondition. See [30] for details.

A dual notion can be defined for maximally-strong postcondi-
tions, which is motivated by the need to discover invariants as op-
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Benchmark Assertion proved

Merge Sort
(inner)

∀y∃x : 0 ≤ y < m ⇒ A[y] = C[x] ∧ 0 ≤ x < t

∀y∃x : 0 ≤ y < n ⇒ B[y] = C[x] ∧ 0 ≤ x < t

Other Sorting ∀y∃x : 0 ≤ y < n ⇒ Ã[y] = A[x] ∧ 0 ≤ x < n

Table 1. The assertions proved for verifying that sorting programs
preserve the elements of the input. Ã is the array A at the input.

Benchmark Precondition inferred

Selection Sort
∀k : 0 ≤ k < n−1 ⇒ A[n−1] < A[k]

∀k1, k2 : 0≤k1 <k2 <n−1 ⇒ A[k1] < A[k2]

Insertion Sort ∀k : 0 ≤ k < n−1 ⇒ A[k] > A[k+1]

Bubble Sort (flag) ∀k : 0 ≤ k < n−1 ⇒ A[k] > A[k+1]

Quick Sort (inner) ∀k1, k2 : 0 ≤ k1 < k2 ≤ n ⇒ A[k1] ≤ A[k2]

Table 2. The preconditions inferred by our algorithms resulting in the
worst case upper bounds runs for sorting programs.

Benchmark Preconditions inferred under given postcondition

Partial Init
pre:

(a) m ≤ n

(b) ∀k : n ≤ k < m ⇒ A[k] = 0

post: ∀k : 0 ≤ k < m ⇒ A[k] = 0

Init Synthesis
pre:

(a) i = 1 ∧max = 0

(b) i = 0

post: ∀k : 0 ≤ k < n ⇒ A[max] ≥ A[k]

Binary Search
pre: ∀k1, k2 : 0 ≤ k1 < k2 < n ⇒ A[k1] ≤ A[k2]

post: ∀k : 0 ≤ k < n ⇒ A[k] 6= e

Merge
pre:

∀k : 0 ≤ k < n ⇒ A[k] ≤ A[k+1]

∀k : 0 ≤ k < m ⇒ B[k] ≤ B[k+1]

post: ∀k : 0 ≤ k < t ⇒ C[k] ≤ C[k+1]

Table 3. Given a functional specification (post), the maximally-weak
preconditions (pre) inferred by our algorithms for functional correct-
ness. The code for these examples is listed in Figure 10.

posed to verifying given assertions. It can be shown that the least
fixed-point based algorithm in Section 4.1 already computes one
such maximally-strong solution. Furthermore, the constraint based
algorithm can be extended to generate maximally-strong postcon-
ditions. See [30] for details.

7. Evaluation
We have built a prototype implementation using the Phoenix com-
piler framework [24] as the frontend parser for ANSI-C programs
and Z3 [25, 7] as our SMT solver. Our implementation is approxi-
mately 15K lines of non-blank, non-comment, C# code.

Since quantification makes reasoning undecidable, SMT solvers
require additional help in the presence of quantified facts. We
have developed a wrapper interface that automatically constructs
patterns for quantifier instantiation (used for E-matching [6]) and
introduces explicit skolemization functions. Also, to support linked
lists, we augment Z3’s support for select/update with axioms for
reachability. See [31, 30] for details.

We evaluated the performance of our algorithms, using a
2.5GHz Intel Core 2 Duo machine with 4GB of memory.

7.1 Templates and Predicates
Our tool takes as input a program and a global set of templates and
predicates. The global template is associated with each loop header

(cut-point) and the global set of predicates with each unknown in
the templates. We use a global set to reduce annotation burden but
possibly at the cost of efficiency. For each benchmark program, we
supplied the tool with a set of templates, whose structure is very
similar to the program assertions (usually containing one unquanti-
fied unknown and a few quantified unknowns, as in Figure 1) and a
set of predicates consisting of inequality relations between relevant
program and bound variables.

7.2 Verifying standard benchmarks
Simple array/list manipulation: We present the performance of
our algorithms on simple but difficult programs manipulating ar-
rays and lists that have been previously considered by alternative
techniques. By adding axiomatic support for reachability, we were
able to verify simple list programs illustrating our extensibility. Ta-
ble 4 presents the benchmark examples, the time in seconds taken
by each of our algorithm (least fixed-point, greatest fixed-point and
constraint-based) and the time reported by previous techniques2.

For the appropriately named Consumer Producer [17], we verify
that only values produced are consumed. For the appropriately
named Partition Array [2, 17], we verify that the output arrays are
partitions of the input. For List Init [12], we verify that the output
list is initialized and for List Insert/Delete [12] that they maintain
the initialization.

Sortedness property: We choose sorting for our benchmark com-
parisons because these are some of the hardest verification in-
stances for array programs and have been attempted by previous
techniques. We verify sortedness for all major sorting procedures.

Table 6, columns 1–5, presents the benchmark examples, the
time taken in seconds by our algorithms (least fixed-point, greatest
fixed-point and constraint-based) to verify that they indeed output
a sorted array and previously reported timings2. We evaluate over
selection, insertion and bubble sort (one that iterates n2 times irre-
spective of array contents, and one that maintains a flag checking
if the array is already sorted). For quick sort and merge sort we
consider their partitioning and merge steps, respectively.

We do not know of a single technique that can uniformly ver-
ify all sorting benchmarks as is possible here. In fact, the missing
results indicate that previous techniques are not robust and are spe-
cialized to the reasoning required for particular programs. In con-
trast, our tool successfully verified all programs that we attempted.
Also, on time, we outperform the current state-of-the-art.

7.3 Proving ∀∃, worst-case bounds and functional
correctness

We now present analyses for which no previous techniques are
known. We handle three new analyses: ∀∃ properties for verifying
that sorting programs preserve elements, maximally-weak precon-
ditions for worst case upper bounds and functional correctness.

∀∃ properties: We prove that the sorting programs do not lose any
elements of the input3. The proof requires discovering ∀∃ invariants
(Table 1). The runtimes are shown in Table 6, columns 6–8. Except
for two runs that timeout, all three algorithms efficiently verify all
instances.

2 We warn the reader that the numbers for previous techniques are poten-
tially incomparable because of the differences in experimental setups and
because some techniques infer predicates, possibly using templates.
3 Similar ∀∃ invariants can be used to prove that no elements are gained.
Together, these invariants prove that the output array is a permutation of the
input for the case when the elements in the input array are distinct.
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Benchmark LFP GFP CFP Previous
Consumer Producer 0.45 2.27 4.54 45.00 [17]
Partition Array 2.28 0.15 0.76 7.96 [17], 2.4 [2]
List Init 0.15 0.06 0.15 24.5 [12]
List Delete 0.10 0.03 0.19 20.5 [12]
List Insert 0.12 0.30 0.25 23.9 [12]

Table 4. Time (secs) for verification of data-sensitive array/list
programs.

Benchmark GFP
Partial Init 0.50
Init Synthesis 0.72
Binary Search 13.48
Merge 3.37

Table 5. Time (secs) for pre-
conditions for functional cor-
rectness.

Sortedness ∀∃ Upper
Benchmark LFP GFP CFP Previous LFP GFP CFP Bound
Selection Sort 1.32 6.79 12.66 na4 22.69 17.02 timeout 16.62
Insertion Sort 14.16 2.90 6.82 5.38 [15]4 2.62 94.42 19.66 39.59
Bubble Sort (n2) 0.47 0.78 1.21 na 5.49 1.10 13.74 0.00
Bubble Sort (flag) 0.22 0.16 0.55 na 1.98 1.56 10.44 9.04
Quick Sort (inner) 0.43 4.28 1.10 42.2 [12] 1.89 4.36 1.83 1.68
Merge Sort (inner) 2.91 2.19 4.92 334.1 [12] timeout 7.00 23.75 0.00

Table 6. Time (secs) for sorting programs. We verify sortedness, preservation (∀∃) and infer
preconditions for the worst case upper bounds.
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Figure 4. Most SMT queries take
less than 10ms.
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Figure 5. LFP and CFP remain rela-
tively robust to irrelevant predicates.

Worst case upper bounds: We have already seen that the worst
case input for Selection Sort involves a non-trivial precondition
that ensures that a swap occurs every time it is possible (line 7
of Figure 1). For Insertion Sort we assert that the copy operation
in the inner loop is always executed. For the termination checking
version of Bubble Sort we assert that after the inner loop concludes
the swapped flag is always set. For the partitioning procedure in
Quick Sort (that deterministically chooses the leftmost element as
the pivot), we assert that the pivot ends up at the rightmost location.
All of these assertions ensure the respective worst case runs occur.

We generate the maximally-weak preconditions for each of the
sorting examples as shown in Table 2. Notice that the inner loop
of merge sort and the n2 version of bubble sort always perform
the same number of writes and therefore no assertions are present
and the precondition is true. The time taken is shown in Table 6,
column 9, and is reasonable for all instances.

Functional correctness: Often, procedures expect conditions to
hold on the input for functional correctness. These can be met
by initialization, or by just assuming facts at entry. We consider
the synthesis of the maximally-weakest such conditions. Table 3
lists our benchmarks and the interesting non-trivial5 preconditions
(pre) we compute under the functional specification (post) supplied
as postconditions. Table 5 lists the time taken to compute the
preconditions.

Partial Init initializes the locations 0 . . . n while the func-
tional specification expects initialization from 0 . . .m. Our algo-
rithms, interestingly, generate two alternative preconditions, one
that makes the specification expect less, while the other expects lo-
cations outside the range to be pre-initialized. Init Synthesis com-
putes the index of the maximum array value. Restricting to equality
predicates we compute two orthogonal preconditions6 that corre-

4 [12] and [17] present timing numbers for the inner loops that are incom-
parable to the numbers for the entire sorting procedure that we report here.
For the inner loops of selection sort and insertion sort, our algorithms run
in time 0.34(LFP), 0.16(GFP), 0.37(CFP) for selection sort compared to
59.2 [12] and in time 0.51(LFP), 1.96(GFP), 1.04(CFP) for insertion sort
compared to 35.9 [12] and 91.22 [17].
5 We omit other non-interesting trivial preconditions for lack of space.

spond to the missing initializers. Binary Search is the standard
binary search for the element e with the correctness specification
that if the element was not found in the array, then the array does
not contain the element. We generate the intuitive precondition that
the input array must have been sorted. Merge Sort (inner) outputs
a sorted array. We infer that the input arrays must have been sorted
for the procedure to be functionally correct.

7.4 Properties of our algorithms
Statistical properties: We statistically examined the practical be-
havior our algorithms to explain why they work well despite the
theoretical bottlenecks. We accumulated the statistics over all anal-
yses and for all relevant modes (iterative and constraint-based).

First, we measured if the SMT queries generated by our system
were efficiently decidable. Figure 4 shows that almost all of our
queries take less than 10ms. By separating fixed-point computation
from reasoning about local verification conditions, we have brought
the theorem proving burden down to the realm of current solvers.

Second, because our algorithms rely on OptimalNegative-
Solutions and OptimalSolutions, it is therefore important that
in practice they return a small number of optimal solutions. In fact,
we found that on most calls they return a single optimal solution
(Figure 6 and 7) and never more than 6. Therefore there are indeed
a small number of possibilities to consider when they are called
(in Figures 2 and 3 and in the constraint encoding). This explains
the efficiency of our local reasoning in computing the best abstract
transformer.

Third, we examine the efficiency of the fixed-point computation
(iterative) or encoding (constraint-based) built from the core pro-
cedures. For the iterative approaches, we reached a fixed-point in a
median of 4 steps with the number of candidates remaining small,
at around 8 (Figure 8). This indicates that our algorithms perform
a very directed search for the fixed-point. For the constraint-based
approach, the number of clauses in the SAT formula never exceeds
500 (Figure 9) with a median size of 5 variables. This explains the
efficiency of our fixed-point computation.

6 Notice that the second precondition is indeed the maximally-weakest for
the specification, even though max could be initialized out of bounds. If
we expected to strictly output an array index and not just the location of the
maximum, then the specification should have contained, 0 ≤ max < n.
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Figure 8. The number of can-
didates in iterative schemes re-
mains mostly below 8.
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Figure 9. The number of
clauses in the SAT formulae
are always less than 500.

Robustness: Our algorithms use a global set of user specified
predicates. We evaluated the robustness of our algorithms over the
sortedness analysis by adding irrelevant predicates. Figure 5 shows
how the performance degrades, as a factor of the base performance
and averaged over all sorting examples, as irrelevant predicates are
introduced. The constraint-based approach is much more robust
than the iterative schemes and, remarkably, only shows degradation
past 35 irrelevant predicates. On the other hand, greatest fixed-point
cannot handle more than 15 and least fixed-point shows steady
decrease in performance.

7.5 Discussion
Our benchmark programs pose a spectrum of analysis challenges.
The experiments corroborate the intuition that a universal panacea
capable of addressing all these challenges probably does not ex-
ist. No single technique (forward or backward iterative or bi-
directional constraint-based) addresses all the challenges, but be-
tween them they cover the space of reasoning required. Therefore
in practice, a combination will probably be required for handling
real world instances.

We have also identified the different strengths that each algo-
rithm demonstrates in practice. We found that for maximally-weak
precondition inference, the iterative greatest fixed-point approach
is more efficient than the constraint-based approach. In a similar
setting of computing maximally-strong postcondition, the iterative
least fixed-point is expected to be more efficient, as is indicated by
its performance in our experiments. A constraint-based encoding is
not suitable in an unconstrained problem where the number of pos-
sibilities grows uncontrollably. On the other hand, when the system
is sufficiently constrained, for example when verifying sortedness
or preservation, the constraint-based approach is significantly more
robust to irrelevant predicates, followed by least fixed-point and
lastly greatest fixed-point.

8. Related Work
Template-based analyses The template-based approach used in
this work is motivated by recent work on using templates to dis-
cover precise program properties, such as numerical invariants [26,
27, 4, 18, 1, 13], quantifier-free invariants over predicate abstrac-
tion [14], and universally quantified invariants (over arrays) [12].
All these techniques differ in expressivity of the templates, as well
as the algorithm and underlying technology used to solve for the
unknowns in the templates. In terms of expressivity, our templates,
which are based on logical structure over predicate abstraction, are
more precise than the quantifier-free templates of [14], and orthog-
onal to the templates used in any other approach.

All techniques, with the exception of [12], employ a constraint-
based approach to encode fixed point, reducing invariant gener-
ation to the task of solving a constraint. In particular, [14] uses
the notion of predicate cover of a quantifier-free formula to re-
duce the problem to SAT solving, while the remaining techniques

use Farkas’ lemma to reduce the problem to solving non-linear
constraints, which are then solved by either SAT solvers after bit-
blasting [13] or by using specialized non-linear solvers [26, 27, 4,
18, 1]. On the other hand, [12] uses an iterative least-fixed point
approach; however it requires non-standard under-approximation
analyses. In contrast, we present both iterative and constraint-based
algorithms built on the power of SMT solvers, and preliminary ex-
perimental results indicate that each has its own strengths.

Predicate Abstraction The form of our templates (in which un-
knowns range over conjunctions of predicates as opposed to numer-
ical templates in which unknowns range over constant coefficients)
is motivated by recent advances in using predicate abstraction to
express and discover disjunctive properties of programs. The im-
portant body of work [10, 9, 21, 17, 22] leading up to our work has
been discussed earlier (Section 1). In that dimension, we extend
the field to discovering invariants that involve an arbitrary (but pre-
specified) quantified structure over a given set of predicates. An-
other significant difference is that our technique (the iterative great-
est fixed-point version, which works in a backward direction) gen-
erate maximally-weak preconditions, while the other predicate ab-
straction techniques that we know of, with the exception of [14], do
not generate preconditions, primarily because most of them work
in the forward direction. [14] presents a constraint based approach
to generating preconditions for quantifier-free templates. In con-
trast, our quantified templates are not only more expressive, but
our experimental results show that the constraint-based approach
does not lend itself well to generating preconditions because of too
many choices that become possible in an unconstrained system.

We do not consider the orthogonal problem of computing the
right set of predicates (e.g., [3, 16]) and leave the interesting avenue
of combining our work with predicate discovery for future work.

Sketching In the domain of program synthesis, combinatorial
search based algorithms [29, 28] are distantly related. They also
use templates, but for program statements. It will be interesting to
apply the ideas presented here to template based program synthesis.

Others [23] describes how to use decision procedures to com-
pute best abstract transformers over domains other than predicate-
abstraction domains. Our iterative algorithms accomplish this for
arbitrary logical structure over predicate abstraction.

Kovács and Voronkov [20] describe a technique for generating
invariants with quantifier alternations using a saturation-based the-
orem prover. Their technique relies on an underlying procedure
for generating invariants over scalar loop variables and an instru-
mented loop counter. Any skolemizations functions are removed
by the introduction of quantifier alternations. They discover quan-
tified invariants for a couple of examples, e.g., array partitioning
and initialization, but the completeness of the approach is unclear
and it is unclear whether it can be adapted to prove given assertions
as opposed to generating arbitrary invariants.
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Partial Init(Array A, int m)
1 i := 0;
2 while (i < n)
3 A[i] := 0;
4 i++;
5 Assert(∀k : 0 ≤ k < m ⇒
6 A[k] = 0)

Init Synthesis(Array A, int n)
1 while (i < n)
2 if (A[max] < A[i])
3 max := i;
4 i++;
5 Assert(∀k : 0 ≤ k < n ⇒
6 A[max] ≥ A[k])

Binary Search(Array A, int n)
1 low := 0; high := n− 1;
2 while (low ≤ high
3 Assume(low ≤ mid ≤ high)
4 if (A[mid] < e)
5 low := mid + 1;
6 else if (A[mid] > e)
7 high := mid− 1;
8 else return;
9 Assert(∀k : 0 ≤ k < n : A[k] 6= e)

Merge(Array A, int n)
1 i := j := t := 0;
2 while (i < n ∧ j < m)
3 if (A[i] ≤ B[j])
4 C[t++] := A[i++];
5 else
6 C[t++] := B[j++];
7 while (i < n)
8 C[t++] := A[i++];
9 while (j < m)

10 C[t++] := B[j++];
11 Assert(∀k : 0 ≤ k < t− 1 ⇒
12 C[k] ≤ C[k + 1])

Figure 10. Benchmark examples for weakest preconditions for functional correctness.

9. Conclusions and Future Work
In this paper, we address the problem of inferring expressive pro-
gram invariants over predicate abstraction for verification and also
for inferring maximally-weak preconditions. We present the first
technique that infers ∀/∀∃-quantified invariants for proving the full
functional correctness of all major sorting algorithms. Additionally,
we present the first technique that infers maximally-weak precon-
ditions for worst case upper bounds and functional correctness.

We present three fixed-point computing algorithms (two itera-
tive and one constraint-based) that use a common interface to SMT
solvers to construct invariants as instantiations of templates with
arbitrary quantification and boolean structure. Our algorithms com-
pute greatest and least fixed-point solutions that induce maximally-
weak precondition and maximally-strong postcondition analyses.

We have implemented our algorithms in a tool that uses off-
the-shelf SMT solvers. Our tool uniformly and efficiently verifies
(sortedness and preservation) properties of all major sorting algo-
rithms and we have also used it for establishing worst case bounds
and maximally-weak preconditions for functional correctness. We
are unaware of any other technique that performs these analyses.

Today, SMT solvers support a variety of theories, and we have
verified simple linked list programs. Next, we intend to use our
algorithms to verify full functional correctness of list/tree and other
data structure operations (e.g. insertion in AVL/Red-Black trees).
Future work includes integrating our algorithms with predicate-
discovery techniques, and extending ideas to program synthesis.

A. Code listing for example benchmarks
Figure 10 shows the benchmark examples for which we generate
the weakest preconditions (Table 3) for functional correctness.
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