
Shape Analysis
Alon Milchgrub

Overview

 Lisp review

 The concrete semantics

 The abstractions function

 The abstract semantics

 Discussion

 In Lisp everything is a list

 The command cons concatenates two objects by creating a new object with

pointers to both the original ones.

 The commands car and cdr are used to access the first and second elements

respectively. e.g.

(cons 'pine '(fir oak maple)) returns (pine fir oak maple)

(car ‘(pine fir oak maple)) returns pine

(cdr ‘(pine fir oak maple)) returns (fir oak maple)

Lisp review

pine (fir oak maple)

Preliminaries

 Let PVar be the set of pointers in a program.

 A shape graph if a directed graph with two type of edges: variable-edges Ev
and selector-edges Es.

 Ev is a set of pairs of the form x, n where x ∈ PVar and n is a shape-node.

 𝐸𝑠 is a set of triplets of the form 𝑠, 𝑠𝑒𝑙, 𝑡 where 𝑠𝑒𝑙 ∈ 𝑐𝑎𝑟, 𝑐𝑑𝑟 and 𝑠 and 𝑡
are shape nodes.

 A shape graph is deterministic if from every PVar exit at most one edge and

from every shape-node exit at most one edge of each of 𝑐𝑎𝑟, 𝑐𝑑𝑟 .

The Concrete Semantics

 𝑥 ≔ 𝒏𝒆𝒘

 𝑦 ≔ 𝒏𝒆𝒘

 𝑦. 𝑐𝑑𝑟 ≔ 𝑥

 𝑧 ≔ 𝐧𝐞𝐰

 𝑥. 𝑐𝑎𝑟 ≔ 𝑧

 𝑦 ≔ 𝒏𝒊𝒍

 𝑦 ≔ 𝑥. 𝑐𝑎𝑟

 𝑧 ≔ 𝒏𝒊𝒍

 𝑧 ≔ 𝑥

 𝑔𝑐 𝑆𝐺

𝑥

𝑙1

𝑦

𝑙2

𝑧

𝑙3

The Concrete Semantics

 The transformations applied to the shape graph are defined by the concrete

semantics 𝑠𝑡 𝒟𝒮𝒢: 𝒟𝒮𝒢 → 𝒟𝒮𝒢.

 Let 𝑣 be a control flow graph vertex and 𝑝𝑎𝑡ℎ𝑠𝑇𝑜 𝑣 the set of paths in the

control flow graph from start to predecessors of 𝑣

 Then the collecting semantics is defined as follows:

𝑐𝑠 𝑣 = 𝑠𝑡 𝑣𝑘 𝒟𝒮𝒢 … 𝑠𝑡 𝑣1 𝒟𝒮𝒢 ∅, ∅ 𝑣1, … , 𝑣𝑘 ∈ 𝑝𝑎𝑡ℎ𝑠𝑇𝑜 𝑣

 This is the set of possible shape graphs at 𝑣.

The Abstract Semantics

 A static shape graph (SSG) is a pair 𝑆𝐺, 𝑖𝑠_𝑠ℎ𝑎𝑟𝑒𝑑 , where

 SG is a shape graph, whose shape nodes are a subset of 𝑛𝑋 𝑋 ⊆ 𝑃𝑉𝑎𝑟 .

 𝑖𝑠_𝑠ℎ𝑎𝑟𝑒𝑑 is a function for the shape nodes of SG to 𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒 .

 Semantically, 𝑖𝑠_𝑠ℎ𝑎𝑟𝑒𝑑 𝑛 = 𝑡𝑟𝑢𝑒 indicates that 𝑛 is pointed to by more than 1

pointer on the heap.

The Abstract Semantics

 Given a DSG, the mapping 𝛼 generates a SSG by replacing the concrete

locations by the set of pointers pointing to the same location (after gc).

 For the image of 𝛼 𝐷𝑆𝐺 𝑖𝑠_𝑠ℎ𝑎𝑟𝑒𝑑 𝑛𝑍 = 𝑡𝑟𝑢𝑒 ⇔ 𝑛𝑧 represents a concrete

location that is pointed by more than 1 pointer on the heap.

𝑥

𝑙3 𝑙4 𝑙5

𝑡1

𝑙1 𝑙2

𝑦 𝑡

𝑛 𝑡𝑛 𝑦

𝑛 𝑥,𝑡1 𝑛𝜙 𝑛𝜙

The Abstract Semantics

 For a set of shape graphs 𝑆 the abstraction function 𝛼 is defined as follows:

𝛼 𝑆 =

𝐷𝑆𝐺∈𝑆

 𝛼 𝑆𝐷𝐺

 Where for two SSGs 𝑆𝐺 and 𝑆𝐺′:

𝑆𝐺 ⊔ 𝑆𝐺′ = 𝐸𝑣 ∪ 𝐸𝑣
′ , 𝐸𝑠 ∪ 𝐸𝑠

′ , 𝑖𝑠_𝑠ℎ𝑎𝑟𝑒𝑑 ∨ 𝑖𝑠_𝑠ℎ𝑎𝑟𝑒𝑑′

 For a single DSG the shape-nodes of 𝛼 𝐷𝑆𝐺 represent disjoint sets of points.

 Let 𝑆 be a set of DSGs, and 𝛼 𝑆 = 𝐸𝑣, 𝐸𝑠 , 𝑖𝑠_𝑠ℎ𝑎𝑟𝑒𝑑 , then it follow that:

For all 𝑛𝑋, 𝑠𝑒𝑙, 𝑛𝑌 ∈ 𝐸𝑠 either 𝑋 = 𝑌 or 𝑋 ∩ 𝑌 = ∅

𝑛 𝑥,𝑡1 𝑛𝜙

𝑛 𝑡

The Abstract Semantics

𝑥
𝑡1

𝑦 𝑡

𝑛 𝑦

The Abstract Semantics

 In order for the abstraction to be useful, one should be able to compute it

directly by transforming the static shape graph (in contrast to by abstracting

the concrete shape graph).

 For this purpose the SSG meaning function 𝑠𝑡 𝒮𝒮𝒢: 𝒮𝒮𝒢 → 𝒮𝒮𝒢 is defined.

The Abstract Semantics

 𝑥 ≔ 𝒏𝒆𝒘

𝑥

𝑛 𝑥

𝑥

𝑙𝑛𝑒𝑤

Concrete Abstract

𝑛 𝑦,𝑡2,𝑥

𝑛 𝑦,𝑡1,𝑥

The Abstract Semantics

 𝑥 ≔ 𝑦

𝑦

𝑙𝑗

𝑡2

𝑦

𝑙𝑖

𝑡1
𝑥

𝑥
𝑦

𝑛 𝑦,𝑡2

𝑡2

𝑦

𝑛 𝑦,𝑡1

𝑡1
𝑥

𝑥

Concrete Abstract

The Abstract Semantics

 𝑥. 𝑐𝑑𝑟 ≔ 𝑦

𝑛 𝑦

𝑛 𝑦,𝑥

𝑦

𝑙𝑗

𝑦

𝑙𝑖

𝑥

𝑦

𝑦
𝑥

𝑥

𝑙𝑘
𝑛 𝑥

𝑥

x

Concrete Abstract

x

The Abstract Semantics

 𝑥 ≔ 𝑦. 𝑐𝑑𝑟

𝑦

𝑛 𝑦

Abstract

𝑛 𝑡1

𝑡1
𝑛 𝑡2

𝑡2

𝑛 𝑡1

𝑡1

The Abstract Semantics

 𝑥 ≔ 𝑦. 𝑐𝑑𝑟

𝑦

𝑛 𝑦

Abstract

𝑛 𝑡1

𝑡1
𝑛 𝑡2

𝑡2

𝑛 𝑡1,𝑥

𝑡1

x

𝑥

The Abstract Semantics

 The abstract semantics associate a SSG, 𝑆𝐺𝑣, with every control-flow vertex

𝑣, defined by:

𝑆𝐺𝑣 =

∅, ∅ , 𝜆𝑛. 𝑓𝑎𝑙𝑠𝑒 𝑖𝑓 𝑣 = 𝑠𝑡𝑎𝑟𝑡

𝑢∈𝑝𝑟𝑒𝑑 𝑣

𝑠𝑡 𝑢 𝒮𝒮𝒢 𝑆𝐺𝑢 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 Theorem (Correctness):

 For every control-flow graph vertex 𝑣:

𝛼 𝑐𝑠 𝑣 ⊆ 𝑆𝐺𝑣

Properties and Achievements

 “Strong Nullification” – When processing a statement of the type 𝑥. 𝑠𝑒𝑙0 = 𝑦
the 𝑠𝑒𝑙0 edges currently emanating from 𝑥 are always removed.

 Materialization – When processing a statement of the type 𝑥 = 𝑦. 𝑠𝑒𝑙0 the

algorithm creates a copy of 𝑦. 𝑠𝑒𝑙0 and thus is able to un-summarize shape-

nodes.

 The shape analysis algorithm presented is able to verify shape preservation

properties of data structures like lists, lists containing a cycle and trees.

Discussion

 What are possible uses of this kind of analysis?

 What are possible extensions of this method?

 What are possible flaws of this method?

 Is it scalable?

