[image: image1.jpg]g

User Manual
Notice

This document is provided for informational purposes only and Microsoft makes no warranties, either express or implied, in this document. Information in this document is subject to change without notice. The entire risk of the use or the results of the use of this document remains with the user.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

© 2002-2004 Microsoft Corporation. All rights reserved.

Microsoft, Windows, and Visual C# are either registered trademarks or trademarks of Microsoft Corporation in the U.S.A. and/or other countries/regions.

Other product and company names mentioned herein may be the trademarks of their respective owners.

Table of Contents

11. Introduction

2. Architecture
2
3. Using the Model Checker
3
3.1 Visual Studio integration
3
3.2 Browsing a Zing Model
3
3.3 Verifying a Model
4
3.3.1 Errors
4
3.3.1.1 Stuck states
4
3.3.1.2 Assertion failures
4
3.3.1.3 Execution failures
5
4. Model Checker Internals
6
4.1 Efficiency techniques
6
4.1.1 State deltas
6
4.2 Fingerprints
6
4.3 User guided state-space reduction
6
4.3.1 Atomic blocks
6
4.3.2 Assume statements
6
4.4 Automatic state-space reduction
7
4.4.1 Symmetry reduction
7
4.4.2 Partial-order reduction.
7
4.4.3 Summarization.
7
4.5 Zing States
7
4.5.1 Global data
7
4.5.2 Heap data
8
4.5.3 Processes & stacks
8
4.5.4 Comparing Zing states
8
4.5.5 Garbage Collection
8

1. Introduction

Concurrent programs are hard to develop and test. While writing concurrent programs, the programmer has to consider every possible interleaving of events among various processes. In spite of several decades of research and engineering experience, few people write robust concurrent programs. Concurrency related bugs (sometimes called “heisenbugs”) still surface only in stress-tests, and these bugs are very hard to reproduce, debug and fix. With the advent of efforts such as the .Net platform, we are enabling more programmers to write distributed and concurrent programs. Thus, problems associated with concurrency are only going to be more widespread.

A technique called “model checking” has proven to be surprisingly effective in the design and testing of concurrent programs. Model checkers work by systematically exploring all possible states of the concurrent program. Industrial software has such large number of states that it is infeasible for any systematic approach to cover all the reachable states. Our goal is the following: suppose we manage to represent a “model” from a program, where a model abstractly represents only a small amount of information about the program, then it is feasible to systematically explore the states of the model.

The Zing project has three components: (1) a modeling language for expressing executable concurrent models of software, (2) a model checking infrastructure for exploring the state space of Zing models, and (3) support infrastructure for generating Zing models automatically from common programming languages like VB, C/C++, C#, and MSIL.

This document is a user manual for Zing’s model checking infrastructure.

2. Architecture

Zing is designed to have flexible software architecture. The architecture is designed to promote an efficient division of labor between MSR and product groups, and make it possible for MSR to experiment and innovate in the core state-space exploration technology while allowing the product groups to tackle those aspects of the problem that are domain-specific (namely extraction of Zing models from their source code, and visualization for showing the results from the Zing state explorer.

[image: image2.emf]Zing

Compiler

Zing

Source

Code

Zing runtime

library

State

Explorer

(checker)

Simulator

Debugger

Visual Studio.NET

model

extraction

user

“source”

visualization

(UML activity)

visualization

(call graph)

…

.Net

events

User

Product

Groups

Zing

team

Domain-

specific tools

Legend

Zing object

code (MSIL)

Figure 1: Architectural overview of Zing

We envision that clients with a need to do systematic state space exploration will be able to build a model extractor from their source language to Zing (to provide proof of concept, we are building model extractors from VB.NET and BPEL ourselves). Once model extraction is done, the generated Zing model is fed into a Zing compiler which converts the Zing model into MSIL object code. The object code supports a specific interface intended to be used by the systematic state explorer.

3. Using the Model Checker

.

Given a Zing model, the Zing compiler generates a managed assembly which allows the state-space of the model to be systematically explored and examined. The state-space is explored by considering all possible interleavings of execution between concurrent processes as well as all possible outcomes of non-deterministic operations.

The Zing state browser can be used to manually examine the state space or to perform a full state-space exploration by a "model-checker". The model-checker finds errors by detecting states in which:

· An explicitly programmed assertion is violated

· The model is stuck (i.e. no processes are executable, but some processes are not in a valid end state).

· An exception has been thrown by the Zing runtime (e.g. dereferencing a null pointer)

· An explicitly programmed exception was not handled

3.1 Visual Studio integration

Zing currently supports a basic level of integration with Visual Studio. A Zing project in Visual Studio corresponds to a single Zing model, and compiles into a single managed assembly in the usual way. Zing projects may contain multiple source files. Zing source code may be edited in Visual Studio with support for token coloring, syntax checking, and code-sense. (Note: project dependencies are ignored by the Zing compiler.)

To launch the Zing State Browser from Visual Studio, select "Debug|Start Without Debugging" (or press Ctrl-F5) which will cause the currently-selected project to be loaded. [Two caveats here: 1) the Zing project will not be recompiled automatically, and 2) the currently-selected project is not necessarily the same as the "Startup" project.]

3.2 Browsing a Zing Model

To examine the behavior of a Zing model, launch the Zing browser, choose File/Open, and select a compiled Zing model (DLL). As a shortcut, you can open a Zing model DLL by simply dragging it onto the browser window.

The browser supports a number of different views of the state-space which may be used together in any combination:

State Tree (View/State Tree, or ctrl-T) - when a model is first loaded, the state tree window shows the initial state ("Init"). The state space can be explored interactively by selecting and/or expanding nodes in the tree. When a node is expanded, the child states are dynamically computed and added to the tree. When a state is selected, information about the state is reflected in the other windows in the state browser.

Except for the initial state, all of the nodes in the tree will have a name of the form "pN" or "cN" where N is a number. State names of the form "pN" indicate that the state is reached by executing the Nth runnable process in the model. Names of the form "cN" occur when the non-deterministic choice operator ("choose") is used. Here, the nodes indicate that the state was reached by selecting the Nth possible outcome of the choice.

State Summary (View/State Summary, or ctrl-S) - this window shows summary information regarding the state. In addition to the unique "fingerprint" for the state, the window shows the number of processes, the current "instruction pointer" for each process, and its state (runnable, blocked, or completed). If a non-deterministic choice is pending, the fingerprint is not available, but the number of pending choices is shown.

State Detail (View/State Detail, or ctrl-D) - this windows shows, in full detail, the state of the model including

· global variables and their values

· the contents of the heap

· the call stack for each process including locals, inputs, and outputs for each stack frame

Source Tracking (View/Source Tracking/0-9, or ctrl-0 thru ctrl-9) - up to 10 source tracking windows may be opened. These will display the current point of execution for the first 10 processes instantiated by the model. If a process is runnable, the next statement to be executed will be highlighted in a blue italic font. If a process is blocked, the statement on which it is blocked will be highlighted in a red italic font.

The View/Tile Windows command (ctrl-W) organizes the windows into a standard arrangement. The "View" menu also includes commands to switch between normal and large fonts. The large font is especially handy for demonstrating the state browser.

3.3 Verifying a Model

To perform a full exploration of the state space of a model, select Verify/Verify! (ctrl-V). By default, the verification will stop when the first error is found. To continue searching after errors are found, go to the "Stop on first error" item in the "Verify" menu and un-check it.

When the verifier finds an error state, it expands the state tree as necessary to show the error state. Error states are always highlighted in light red in the state tree. Normal end-states are shown in blue. States in which an "assume" statement has failed are shown in yellow. When an error state is found and selected, the F7 and F8 shortcuts may be used to move the state tree's node selection backward and forward in time, respectively. Combined with the source tracking windows, this can be a very convenient way of walking through the sequence of events which led to an error.

3.3.1 Errors

The Zing model-checker is capable of detecting a number of different errors in a Zing model, as described in the sections below. All properties currently checked are safety properties. Liveness properties are not currently supported.
3.3.1.1 Stuck states

Zing will detect states in which no further progress can be made but are not valid “end states”. A valid end state is one in which each process has terminated normally (by returning from its top-level method) or is blocked in a select statement marked with the end qualifier.
3.3.1.2 Assertion failures

The assert statement allows application-specific safety properties to be encoded in a Zing model. If the asserted expression does not evaluate to true, then the assertion fails and an error trace is reported. An optional comment string may be included in the assert statement to provide additional domain-specific context for the error.
3.3.1.3 Execution failures

Zing models may fail to execute properly for several other reasons. Any of these failures will cause an error trace to be generated by the model-checker:

· Dereferencing a null pointer

· Assigning a generic “object” reference to a strongly-typed variable of an incompatible type

· Indexing an array outside of its declared bounds

· Arithmetic overflow

· Divide by zero

· Failure to handle a Zing exception

· Removing a non-existent member of a set

· Executing a blocking select statement within the body of an atomic block (i.e. not as the first statement of the block)

· Execution of a choose operator with zero alternatives (e.g. choose from an empty set)
4. Model Checker Internals

The Zing compiler and runtime are designed to explore the state-space of a model efficiently using a number of different techniques. In some cases we strive for efficiency by making each state consume less space, be faster to generate, or be more quickly compared with other states. Usually more important, though, are techniques that attempt to reduce the size of the state-space itself.

Some of the techniques currently employed by Zing are described here. We expect additional techniques to be applied in the future.
4.1 Efficiency techniques

4.1.1 State deltas

It’s common in a Zing model for one step of execution to make a relatively small change to the overall state of the model. The Zing runtime uses this to its advantage by remembering only the “delta” between a state and its parent. As the state-space search proceeds (in a depth-first manner, typically) only the “current” state is maintained in its complete form. When it becomes necessary to return to the parent of a state (to generate its other successors) the reverse-delta that was maintained for it can be quickly applied, yielding the parent’s full state representation.

State deltas result in a considerable savings of both time and space. But because it is also possible to generate the full “clone” of any Zing state, we retain the ability to implement more complex search strategies in the future.
4.2 Fingerprints

Because the state of a Zing model is complex, the comparison of one Zing state with another presents a challenge. To address this, Zing computes a 64-bit fingerprint for each state which uniquely identifies the state (with high probability). This allows states to be hashed and compared efficiently. As an additional benefit of the fingerprinting algorithm, “similar” states yield the same fingerprint, reducing the number of states that must be considered (see Section 4.4.1 below).
4.3 User guided state-space reduction

The user has two ways to guide state-space reduction
4.3.1 Atomic blocks

Atomic blocks allow the author of a Zing model to control the points at which interleavings of execution between processes will be considered. In many cases, atomic blocks must be used to achieve the desired model semantics – e.g. to ensure that operations which are truly atomic are treated as such by Zing. In other cases, additional atomic blocks can be added to a model without affecting its semantics but with the intent of reducing the number of process interleavings to be considered.
4.3.2 Assume statements
The assume statement allows Zing authors to manually “prune” portions of the state-space tree. The assume statement includes a binary expression whose result determines whether the current state is worthy of consideration. If the expression evaluates to false, then the current state is deemed “uninteresting” and neither it nor its successors will be examined further.

This is similar to the assert statement in that it may remove states from consideration, but unlike an assertion failure it is not treated as an error.

4.4 Automatic state-space reduction

We have implemented several algorithms to automatically reduce the number of states explored, without missing any errors that may exist in the model. We give a brief overview of the techniques below. More details can be obtained from the technical papers at the Zing website http://research.microsoft.com/zing
4.4.1 Symmetry reduction

A Zing state comprises the thread stacks, the global variables, and a heap of dynamically allocated objects. Two states are equivalent if the contents of the thread stacks and global variables are identical and the heaps are isomorphic. When the state explorer discovers a new state, it first constructs a canonical representation of the state by traversing the heap in a deterministic order. It then stores a fingerprint of this canonical representation in the hash table.

4.4.2 Partial-order reduction.

We have implemented a state-reduction algorithm that has the potential to reduce the number of explored states exponentially without missing errors. This algorithm is based on Lipton's theory of reduction. Our algorithm is based on the insight that in well-synchronized programs, any computation of a thread can be viewed as a sequence of transactions, each of which appears to execute atomically to other threads. During state exploration, it is sufficient to schedule threads only at transaction boundaries. If programmers follow the discipline of protecting each shared variable with a lock, then these transactions can be inferred automatically. These inferred transactions reduce the number of interleavings to be explored, and thereby greatly alleviate the problem of state explosion.

4.4.3 Summarization.

The ability to summarize procedures is fundamental to building scalable interprocedural analyses. For sequential programs, procedure summarization is well-understood and used routinely in a variety of compiler optimizations and software defect-detection tools. This is not the case for concurrent programs. Zing has an implementation of a novel model checking algorithm for concurrent programs that uses procedure summarization as an essential component. Our method for procedure summarization is based on the insight about transactions mentioned earlier. We summarize within each transaction; the summary of a procedure comprises the summaries of all transactions within the procedure. The procedure summaries computed by our algorithm allow reuse of analysis results across different call sites in a concurrent program, a benefit that has hitherto been available only to sequential programs.

4.5 Zing States

Unlike many model-checkers, Zing’s state vector size is variable in a number of aspects. The elements of a Zing state, and the way in which states are compared are described below.
4.5.1 Global data

The “global data” portion of a Zing state is comprised of the static fields of all of the declared classes in the Zing model. The size of the global data section is constant for a given model.
4.5.2 Heap data

The Zing heap contains all of the complex type instances allocated by the model. The heap size is variable in both the number of items it contains, and (for some types) the size of the items themselves. Channels, sets, and (eventually) arrays are complex types whose size is variable.
4.5.3 Processes & stacks

Zing states may include an unbounded number of processes, and each process includes a stack whose size is unbounded. The size of an individual stack frame is fixed.
4.5.4 Comparing Zing states

Zing states are compared against one another not by direct comparison of their state data, but rather by comparing their fingerprints. The 64-bit fingerprint of a state is generated by first serializing the state data in a prescribed manner and then applying a fingerprinting algorithm to the generated state vector. The fingerprinting algorithm is chosen both for efficiency and to minimize the possibility that two different states will yield the same fingerprint.

Another property of the fingerprinting process is that it will produce the same fingerprint for states that are superficially different, but actually equivalent in some respect. This is done primarily by “normalizing” pointers to the Zing heap during the process of serializing the Zing state.
4.5.5 Garbage Collection

As part of computing each state’s fingerprint, any live objects in the Zing heap will be encountered and serialized. Any unreached heap objects are simply not carried forward to subsequent states.

Copyright SYMBOL 211 \f "Symbol" Microsoft Corporation 2002-2004IF DATE \@ "yyyy" = "1998" "1998-" . All Rights Reserved.

Copyright SYMBOL 211 \f "Symbol" Microsoft Corporation 2002-2004IF DATE \@ "yyyy" = "1998" "1998-" . All Rights Reserved.
Please send corrections, comments, and other feedback to zing@microsoft.com

