
1

AMicromodels of Software:

Lightweight Modelling

and Analysis with Alloy

Software Design Group

MIT Lab for Computer Science

Draft / February 2002

© Daniel Jackson, 2001,2002

2

Acknowledgments

The Alloy language was designed by Daniel Jackson, with help from Ilya Shlyakhter
and Manu Sridharan. These three developed the concept and early design of the Alloy
Analyzer. The current tool was designed and implemented primarily by Ilya and Manu.
Ilya designed and implemented the backend SAT framework, with help from Dan
Kokotov. Brian Lin and Julie Yoo built the visualization facility. Jesse Pavel built the tree
views and much of the graphical user interface. Sarfraz Khurshid and Mandana Vaziri
did the first substantial Alloy case studies, and contributed many useful insights to the
language and tool.

We are grateful to colleagues whose comments have improved our exposition of Alloy,
especially Michael Jackson, Pamela Zave, Jim Woodcock, Tony Hoare, Norman
Ramsey, Laurie Dillon and Mark Saaltink.

Funding for this work was provided by the National Science Foundation, under ITR
grant #0086154, by a grant from NASA, and by an endowment from Doug and Pat
Ross.

Comments on this draft are very welcome. Please send to dnj@mit.edu.

3

4

Chapter 1: Introduction

This book is about building and analyzing models of software using a language called
Alloy. This chapter sets the scene by explaining why modelling in general is useful, and
what’s unusual about the approach Alloy takes.
How can you avoid reading this book? Read the quick start introduction to Alloy for
experts (Appendix 1), download the tool and start building and analyzing models of
your own.

1.1 What Is a Micromodel?

A model is an analyzable representation of a system. To be useful, it must be simpler
than the system itself, but faithful to it; there’s not much point analyzing a model if it
doesn’t tell you something about the system itself. The key to a good model is abstrac-
tion: capturing the aspects that matter, and ignoring the rest. Models are built to
explain and evaluate existing systems, and to explore the design of systems yet to be
built.

Many different languages and approaches for modelling software exist. Why another?

· Our models are micromodels: usually orders of magnitude smaller than the systems
they model. Ten or twenty lines may be enough to say something useful about a sys-
tem whose implementation has thousands of lines of code. The modelling language
itself is also unusually small and simple. It is easy to learn and easy to use, but pow-
erful and flexible enough for complex applications.

· Our models are analyzable. The language was designed hand-in-hand with a fully
automatic tool that can simulate models and check their properties. Simulation gen-
erates structures and behaviours without making you provide sample inputs or test
cases. Checking generates counterexamples – structures or behaviours for which an
expected property does not hold; from a counterexample, it’s usually not too hard to
figure out what’s wrong.

· Our models are declarative. A declarative model describes a system’s state and
behaviour by listing properties or constraints. Unlike a program, which is opera-
tional, it doesn’t explain how states are constructed, or how execution obtains a new
state from an old state. Instead, it gives constraints that define a well-formed state,
and that say how a new state and an old state are related. When you build a program,
you ask yourself ‘how would I make X happen?’. But when you build a declarative
model, you ask ‘how would I recognize that X has happened?’.

5

· Our models are structural. Software systems have (at least) two kinds of complexity.
There’s complexity due to event sequencing, and complexity in the structure of the
state itself. It’s the structural complexity that Alloy is designed for. There are many
tools for analyzing sequences of events, but very few for analyzing structures.

None of these features is new in itself. Martin Fowler’s ‘analysis patterns’ [] are small;
formal specifications in Z [] are declarative and structural; and model checking lan-
guages such as SMV [] and Promela [] are analyzable. What is new is the combination
of features, especially of declarative modelling and analyzability.

It’s been assumed for a long time that a model can’t be executable and declarative at the
same time. If you wanted the succinctness and abstraction of a declarative model, you
had to give up the benefit of immediate feedback that execution brings; if you wanted
execution, you had to write your specifications like programs, and not take advantage
of the most powerful feature of specification languages – namely conjunction. With
the right technology, however, there is no conflict: you can have your cake and eat it.

A declarative model cannot, admittedly, be executed as efficiently as an imperative
program, so it can’t be used directly in an implementation (at least yet). But its execu-
tion can be simulated. Viewed as a form of analysis, traditional execution is rather
inflexible: you have to provide the initial state, and the model can only be run forwards.
Our analysis mechanism can generate before and after states; it can simulate execution
backwards; and it can generate sample states from invariants alone.

Let’s look at each of these features in more detail.

1.2 Why Micromodels?

You won’t really know why micromodelling is useful until you try it.

The basic motivation for all modelling is that it’s a good way to end up with a high qual-
ity system. I have to admit upfront that ‘good’ here is a value judgment. If you’re not
building something that has to be very reliable, and can tolerate bugs, and if you’re will-
ing to spend inordinate amounts of time reworking and retesting your code, then mod-
elling might not be good for you.

This is not an entirely frivolous observation. I have noticed, in my teaching, that soft-
ware engineers are divided, very roughly, into two categories. There are the thinkers
who get pleasure from getting it right; who like to feel that they’ve nailed the problem;
who want to discuss and solve design problems. And there are tinkers who like to build
mechanisms: they enjoy the thrill of the first successful run more than the satisfaction
of knowing that the system really works (and why). Thinkers like to design abstract
interfaces; tinkers like to devise low-level hacks. Both are important in a software proj-
ect, but only thinkers tend to make good modellers.

6

That said, modelling with pencil and paper alone can be rather a dry business, and
making modelling more like programming has brought out the thinker in many a tin-
ker. Developing a model interactively, with a tool generating pictures of unexpected
scenarios, feels very different – like the difference between writing pseudo-code on the
one hand, and compiling and running a program on the other.

1.2.1 Why Micro?

It should be obvious why a model must be small. After all, if it’s as big as the code itself,
you’ll double the effort, and that will usually break the budget. There are models from
which code can be generated, but if you look at them carefully, you’ll see that they have
two parts: a skeleton, which is the model proper, and the details, which are often writ-
ten in a programming language anyway.

What’s surprising is how much can be gained from a really tiny model. Instead of mod-
elling all aspects of a system, you can focus on the risky ones: those that are most crit-
ical, most likely to fail, most expensive to implement, most likely to be implemented
incorrectly, and so on. By factoring out some aspect, you can build a model that allows
you to solve an important problem that would be obscured in a larger and more com-
prehensive model.

If you’ve read this far, you probably aren’t wondering why one would write a model at
all. But the question is worth posing. The popularity of extreme programming [] has
been fuelled by the heaviness of modelling languages like UML, and is giving
respectability to the idea that well-documented code is enough. But this position is –
well, extreme; just because there are bad models doesn’t mean that models are bad.
Without models, you can’t talk about designs precisely until you have code. And even
if you have code, there’s still good reason to have models. Aspects of a system that can
be crystallized in a few lines of model are often buried deep in the code, and dispersed
throughout, tangled up with other, less relevant concerns. Code is our greatest asset –
after all, it’s the stuff that executes – and, at the same time, our greatest liability. If all
you have is the code, you should expect to pay heavily whenever a new programmer is
brought on board. And good luck to you if all your programmers leave…

Another objection to modelling comes from programming language researchers (such
as Bob Harper []) who argue, more convincingly I think, that design representations
are enormously important, but only worth maintaining if they are connected to the
code, and kept in step with it. This is a laudable goal, but we shouldn’t throw the baby
out with the bath water. Just because we don’t yet have means to guarantee confor-
mance of an implementation to a model doesn’t mean that we should abandon the
model. The kinds of constraints that can be expressed in our modelling language are
far more expressive than those any compiler can currently check. And often the lever-
age gained in writing a small model is due in large part to an abstraction, in which we

7

take a view of structure far above that taken in the code.

1.2.2 Why Analysis?

Researchers in the field of formal methods have found, time and time again, that the
simple act of writing a careful specification usually exposes misunderstandings and
complexities, even if you do nothing else with the specification afterwards. And critics
have often joked, with some justification, that formal specifications are ‘write-only’.
Even advocates of formal methods have downplayed the value of tools, and many pub-
lished specifications have been developed with a pretty printer and type checker as the
only tool support.

Building a model incrementally with an analyzer, simulating and checking as you go
along, is a very different experience from using pencil and paper alone. First, it’s amaz-
ing how many simple slips even a competent modeller can make turning ideas into
text. These tend to be exposed quickly. Second, the feedback you get from simulation
is thought-provoking, and helps bring to mind important properties. Third – and this
is the most powerful role of analysis – you can check whether the model has some
properties you intended but didn’t state explicitly. Novices worry that this means pro-
ducing a ‘higher level’ specification, leading the modeller into an infinite regress. But
in practice it doesn’t ; even rather mundane consequences can expose subtle problems
in a design. And finally, using a tool is fun: successfully checking properties and gener-
ating plausible simulations gives you a sense of progress, and confidence in the model.

Analysis tends to make models not only more correct but also more succinct. We often
rework parts of a model, and ask the analyzer to check that a reformulation of some
part doesn’t change its meaning.

I’ve sat up all night many times trying to get an Alloy model right. The analyzer is more
ruthless than a compiler, because it finds bugs more quickly and more thoroughly.
Initially, it can be disheartening to discover basic flaws in what seemed to be a simple
model. But there’s a satisfaction that comes with discovering that a problem is more
interesting than it first appeared to be, and a confidence that comes when the model
behaves as expected under analysis, and is smaller and cleaner to boot. I now cringe at
the thought of all the models I wrote (and even published) that were never analyzed, as
I know how error-ridden they must be.

1.2.3 Why Declarative?

Declarative languages are a good fit for incremental modelling. The more you say, the
more constrained the system description, and the fewer behaviours are possible. In
contrast, with a programming language, roughly speaking, the more you say, the more

8

happens. So if you want to start with as few commitments as possible, a declarative lan-
guage allows you to start by saying very little. An operational language would require
you to list the possibilities.

Also, because a declarative model is built up by conjunction, often all you need to do
to say more, and to make your model fit the system more closely, is to add a property.
That is, the model can grow steadily. Operational languages make you undo options
that you’ve previously listed.

Incrementality aside, declarative languages make it easier to write partial descriptions.
Half-baked models are partial, but so are most models in their final form. Being com-
plete is an overrated quality of specifications; often the problem is that the specifica-
tion says too much, not too little. The more partial the description of the system to be
implemented, the more freedom is left to the implementer. And the more partial the
description of a system’s environment, the more confidence we can have that the sys-
tem doesn’t rely on some environmental property that may turn out not to hold.

Another advantage of a declarative language is that there’s no need for two languages,
one for system modelling and one for expressing checks. The claim that the system as
described has some property is just an implication: that the property describing the
system implies the property being checked.

One very handy exploitation of the fact that properties look no different when they are
part of the system description is masking. Suppose we check that our system as mod-
elled has some property P, and the analyzer finds a counterexample. We might try and
fix the problem, but perhaps we want to carry on, and check a property Q. If Q fails too,
we might wonder whether fixing P would fix Q also. To check this, all we need to do is
make P a property of the system, masking any errors that arise from P not holding.

The term ‘declarative’ has been used in the functional languages world to mean free of
side-effects. Of course, our language is declarative in this sense too.

1.2.4 Why Structural?

Complex states, involving elaborate configurations of simple elements, are all around
us. Think of our highway systems, postal routes and telephone switches; of company
organizations, family trees and political connections; of shopping lists, library cata-
logues and address books. Structure is there in the problem domain of most comput-
ing systems. And when it’s not there, we introduce it, in the form of hierarchy or nam-
ing schemes – for example, by filing our mail into folders or by giving nicknames to our
friends so we don’t need to remember their email addresses.

The problems of dealing with concurrency have kept researchers occupied so inten-
sively that they have neglected structural complexity. Many problems that seem at first
glance to be about events and concurrency turn out, when viewed more broadly, to

9

have important structural aspects. Designing a single traffic light may best be viewed
in terms of events and transitions between simple states. But designing a system for a
network of roads raises considerations of topology – how the roads may be connected,
and how the placement of lights affects global flow.

Structural complexity is becoming more pervasive, for two reasons. First, the growth
in computational power makes it more feasible to store and manipulate structures,
even in small embedded devices. Every cell phone includes a phone book now. Second,
systems are more and more often implemented in a style in which they self-assemble,
forming complex structures to fulfill particular functions. Many design patterns []
achieve compile-time decoupling by putting objects together at runtime. Observer, for
example, propagates changes from a data object to an ‘observer’ object anonymously,
by including a protocol with which observer objects are registered with data objects for
subsequent notifications.

1.3 Risk-Driven Modelling

It’s dogmatic and unrealistic to insist on building a complete model of your system.
Any system has parts with elaborate behaviours that are easy to implement and best
left expressed in code alone. A graphical user interface, for example, is often best built
by experimenting with an implementation, tweaking it in response to feedback from
users. The key to improved design is judicious modelling: focusing your modelling
effort where it’s most likely to bring benefit.

How do you decide what to model? You have to identify those aspects of the system in
which the greatest risks lie. Some parts of the system may be more crucial than others;
in a word processor, for example, a latent fault in the code that manipulates the docu-
ment is more worrisome than a latent fault in the user interface. Modelling need not
respect module boundaries. Sometimes the aspect of the system that warrants atten-
tion crosses module boundaries. In an email client, for example, a message may be sent
to the wrong address because of a fault in the address book, in the reply mechanism,
or in the code that structures messages.

You may pick some aspect because your intuition tells you that you’re likely to get it
wrong. Other aspects may be no less important, but you’re more confident that you
can implement them correctly. A fault in the code that organizes messages into folders
is probably less likely than a fault in the code that synchronizes your local folders with
a remote server.

A skeptics will say that you can’t know in advance what might go wrong. And of course
software, unlike other engineering artifacts, is prone to failure from unexpected cou-
plings. It would be foolish to conclude from this, however, that you shouldn’t try to

10

identify and prioritize risks. For a safety-critical system, it makes sense to construct
models even of mundane aspects. But for most systems, there’s a diminishing benefit
as you move down the list of modelling priorities.

Focusing on risk early on in a development demands a new mindset. The tinker asks
‘how do I make that happen?’ and dwells on small aspects that will make the program
faster or more featureful. The thinker asks ‘how might I get it wrong?’ and dwells on
small aspects that might undo all the work of the project, in failures at runtime, or in
design flaws that require massive reworking of the code.

A modelling language must bring clarity to the trickiest aspects of a system. This is why
it’s important that the definition of the language itself be crystal clear. The last thing
the modeller needs is to struggle with obscurities and complications that have nothing
to do with the artifact being modelled.

One way to achieve this is to give the language a mathematical interpretation. Some
critics of formal methods have mistakenly equated mathematics with complexity. But
the purpose of formalization is exactly the opposite. Saying precisely what a language
construct means, in terms of basic set theory for example, is so difficult for any but the
simplest constructs, that it rules out complexity from the start. It’s not that set theory
is a more complicated and sophisticated way to understand structures than another;
it’s that we don’t know any theory that’s simpler.

A classic example of this misconception is the view that informal notations are
straightforward and formal specification languages are complicated. If you look behind
the surface syntax, and consider notations of comparable expressiveness, you’ll discov-
er that the informal notations are usually far more complicated.

A risk-driven approach suggests that a modelling language should be measured by the
tricky cases – after all, these are the ones to which it will be applied in practice. The
informal notations mostly fail this test. One of the best known object modelling nota-
tions, for example, makes it painful to express multiple and dynamic classifications
because, in place of simple mathematical classification notions (sets and subsets), it
uses implementation concepts, such as subclassing. And yet the same notation cannot
easily express tricky aspects of code (such as views, in which mutations of one object
affect observations of another).

Discussion

How does Alloy differ from existing languages?

Unlike a programming language, an Alloy model is declarative: it can describe the
effect of a behaviour without giving its mechanism. This allows very succinct and par-

11

tial models to be constructed and analyzed. It is similar in spirit to the formal specifi-
cation languages Z, VDM, Larch, B, OBJ, etc, but, unlike all of these, is amenable to
fully automatic analysis in the style of a model checker.

How is Alloy related to Z?

Z was a major influence on Alloy. Very roughly, Alloy can be viewed as a subset of Z.
Unlike Z, Alloy is first order, which makes it analyzable (but also less expressive).
Alloy’s composition mechanisms are designed to have the flexibility of Z’s schema cal-
culus, but are based on different idioms: extension by addition of fields, similar to
inheritance in an object-oriented language, and reuse of formulas by explicit parame-
terization, similar to functions in a functional programming language. Alloy is a pure
ASCII notation and doesn’t require special typesetting tools.

How is Alloy related to UML?

Alloy is similar to OCL, the Object Language of UML, but it has a more conventional
syntax and a simpler semantics, and is designed for automatic analysis. Alloy is a fully
declarative language, whereas OCL mixes declarative and operational elements. The
‘navigational dot’ of Syntropy is a key operator in Alloy, but is given a more uniform
and flexible interpretation than in OCL. Because operators can be applied to entire sets
and relations, Alloy tends to be more succinct than OCL.

Alloy models can describe object models and operations, as well as properties to be
checked. The Alloy Analyzer can check the consistency of an object model expressed
in Alloy, and can generate snapshots from it, and can execute operations and check
their properties. Alloy can handle relations with arbitrary arity, and has structuring
mechanisms to allow reuse of model fragments.

How does the Alloy Analyzer differ from model checkers?

The motivation for the Alloy project was to bring to Z-style specification the kind of
automation offered by model checkers. The Alloy Analyzer is designed for analyzing
state machines with operations over complex states. Model checkers are designed for
analyzing state machines that are composed of several state machines running in par-
allel, each with relatively simple state. Alloy allows structural constraints on the state
to be described very directly (with sets and relations), whereas most model checking
languages provide only relatively low-level data types (such as arrays and records). The
input languages of model checkers do not usually allow you to describe the state with
the kinds of data structures easily handled by Alloy (tables, trees, etc); most require
even simple data structures to be encoded using low-level primitives such as arrays and
enumerations.

12

Model checkers do a temporal analysis that compares a state machine to another
machine or a temporal logic formula. In technical terms, the Alloy Analyzer is a “model
finder” and not a “model checker”. Its engine takes a formula and attempts to find a
model of it. A model checker, on the other hand, takes a state machine and attempts to
show that it is a model of a formula. The Alloy Analyzer’s analysis is not temporal: it
checks that an assertion holds by trying to find a counterexample, which may be a par-
ticular bad execution of an operation, or a trace that leads to an undesirable state.

Most of the examples we’ve done involve invariant-based reasoning, in which you for-
mulate assertions that claim that an invariant is preserved in an execution step. This
has a nice modularity: you can analyze individual operations, and be sure that a par-
ticular operation is sound irrespective of the other operations. Recently, we’ve started
making assertions about traces. This approach is easier for the user, because you don’t
need to find an invariant that characterizes the reachable states, but it can be incom-
plete (that is, fail to account for some reachable states) if you don’t instruct the analyz-
er to consider long enough traces.

Most model checkers do not allow state transitions to be specified declaratively: the
input is essentially a program that uses assignment statements to describe a transition
step. The Alloy Analyzer is designed for declarative specifications, in which invariants
and operations are described by arbitrary formulas that may involve conjunction per-
vasively.

How does the Alloy Analyzer differ from theorem provers?

The Alloy Analyzer’s analysis is fully automatic, and when an assertion is found to be
false, the Alloy Analyzer generates a counterexample. It’s a “refuter” rather than a
“prover”. When a theorem prover fails to prove a theorem, it can be hard to tell what’s
gone wrong: whether the theorem is invalid, or whether the proof strategy failed. If the
Alloy Analyzer finds no counterexample, the assertion may still be invalid. But by pick-
ing a large enough scope, you can usually make this very unlikely.

13

14

Chapter 2: Basic Notions

This chapter introduces the mathematical building blocks that underlie Alloy, our
modelling language. In comparison to a standard presentation of first-order logic and
basic set theory, it’s notable more for what’s missing than for what’s present. Look out
for the treatment of scalars and sets, and the definitions of the dot and arrow opera-
tors, which are generalized forms of relational join and cross-product.

We’ll need a little bit of meta-notation to talk about types and the universe of atoms.
To make it clear when our notation isn’t Alloy, we’ll use mathematical symbols (such
as angle brackets) rather than their ASCII counterparts, and we’ll set identifiers in all
caps. The type expressions, for example, are replaced in Alloy proper by ‘field declara-
tions’ within signatures. And none of the ‘display expressions’ used in this chapter to
represent relations are legal Alloy. It’s convenient to explain the semantics of Alloy in
terms of tuples, sets and so on, but Alloy itself dispenses with these notions. In this
chapter, for example, we’ll use the standard notation {(s,t)} for the relation that maps s
to t; in Alloy itself, we’d write s->.

2.1 Atoms and Relations

2.1.1 Atoms

The structures in our models will be built from relations and atoms. An atom is a prim-
itive entity that is

· indivisible: it can’t be broken down into smaller parts;

· immutable: its properties don’t change over time; and

· uninterpreted: it doesn’t have any built-in properties, the way numbers do, for exam-
ple.

Elementary particles aside, very few things in the real world are atomic. But that won’t
stop us from modelling them as such. In fact, our modelling approach has no built-in
notion of composites at all. To model a part a that consists of parts b and c, we’ll treat
a as atomic, along with b and c, and represent the containment by an explicit relation
that maps a to b and to c. Containment is just one example of a structural relationship,
and there’s little reason to single it out for special treatment.

15

2.1.2 Relations

A relation is a structure that relates atoms. Mathematically, it’s a set of tuples, each
tuple consisting of a sequence of atoms. You can think of a relation as a table, in which
each entry is an atom. The order in which the columns appear is important, but the
order of the rows is irrelevant. Each row must have an entry in every column. Relations
are first-order; entries are always atoms, and never relations.

In any model, we’ll partition the universe of atoms into disjoint basic types. Relations
are typed, so that in any given column, it will only be permissible to place atoms of a
certain type. Suppose we have basic types S and T, for example. Then a relation that is
declared to have the type 〈S,T〉 must have atoms of type S in the first column and atoms
of type T in the second column.

A relation can have just one column, with a type like 〈S〉, and it can have more than two
columns, with a type like 〈S,T,U〉. But it must have at least one column. Let’s call a rela-
tion with k columns a k-relation; k is usually called the relation’s arity. 1-relations, 2-
relations and 3-relations are said to be unary, binary and ternary.

A relation can be empty – that is, having no rows – or non-empty. We will only con-
sider finite relations, namely those with a finite number of rows. If a relation has entries
of only one type – that is all columns have the same type – it’s said to be homogeneous,
otherwise it’s heterogeneous.

Two relations are equal if they contain the same rows. That is, two relations p and q are
equal if whenever p has some row (a, b, c, …), the same row of atoms appears in q, and
vice versa. Two atoms are equal if they are the same atom – that is, not two atoms at
all, but one.

2.1.3 No Sets or Scalars

In Alloy, every expression denotes a relation. So there won’t be any sets of atoms; they’ll
be represented by unary relations. And there won’t be any scalars; they’ll be represent-
ed by singleton unary relations – that is, relations with one column and one row. So,
where a conventional language would distinguish a (a scalar), {a} (a singleton set con-
taining a scalar), (a) (a tuple) and {(a)} (a relation), we’ll treat them all as the same,
and represent them as {(a)}.

This is odd at first, but very handy in practice. It makes the semantics of the language
simple and uniform. It side-steps the partial function problem (since without scalars,
there’s no way to apply a function at all!). And it allow models to be written more suc-
cinctly. When using the language, you don’t really have to think of sets as unary rela-
tions; that’s more of a trick to give meaning to the built-in operators without having to
overload them. But you will have to bear in mind the representation of scalars as sin-

16

gletons. From now on, when we say ‘set’ we mean a unary relation, and when we say
‘scalar’, we mean a singleton unary relation. And when used informally, the term ‘rela-
tion’ will mean a relation that isn’t a set – that is, a relation of arity 2 or more.

2.1.4 Examples

Suppose we have two basic types, PERSON and DATE, containing atoms as follows:

type PERSON

atoms AKIVA, BECCA, CLAUDIA, DANIEL, EMILY, …

type DATE

atoms JAN-1, JAN-2, …, FEB-1, FEB-2, …, DEC-31

Then here are examples of a 1-relation, 2-relation and 3-relation:

relation akiva

type 〈PERSON〉
value {(AKIVA)}

relation parents

type 〈PERSON,PERSON〉
value

{(AKIVA,CLAUDIA),(AKIVA,DANIEL),(BECCA,CLAUDIA),(BECCA,DANIEL)}

relation birthdayBook

type 〈PERSON,PERSON,DATE〉
value {(AKIVA,DANIEL,MAY-7),(AKIVA,BECCA,FEB-11),(DANIEL,CLAU-

DIA,SEP-28)}

If a relation has a row containing the entries a and b, we’ll say it ‘relates’ a to b or ‘maps’
a to b.

The relation akiva is a unary singleton – that is, a scalar. The relation parents is bina-
ry, and maps each person to his or her parents. The relation birthdayBook is ternary;
it relates p, q and d if date d is the recorded birthday of person q in the birthday book
of person p. In this case, AKIVA has entries in his birthday book for DANIEL and BECCA,
and DANIEL has an entry for CLAUDIA.

Don’t confuse the name of a relation (such as akiva), which can appear in Alloy, from
the name of an atom (such as AKIVA), which cannot. Of course, in practice, we’ll use the
variables to refer to the atoms: since akiva will be assumed to have the value
{(AKIVA)}, becca to have the value {(BECCA)}, and so on, we’ll be able to describe rela-
tion values without referring to atoms directly. With the operators defined later, we can
define the particular value of the parents relation given above like this:

17

parents = akiva->claudia + akiva->daniel + becca->claudia + becca-

>daniel

or more succinctly, like this:

parents = (akiva + becca) ->(claudia + daniel)

(saying that akiva and becca‘s parents are claudia and daniel).

2.1.5 Properties of Relations

We’ll call the types of a binary relation its left and right types, and, correspondingly, the
sets of atoms in the first and second columns the left and right sets. These terms can
be applied to non-binary relations too. For a unary relation, the left and right types are
the same; for a ternary relation, the left and right types are the first and third. When
people talk about the domain and range of a relation they usually mean the left and
right sets of a binary relation; it’s not clear what these terms mean for non-binary rela-
tions.

Note that the left set is not necessarily the set of atoms in the left type. If so – that is,
the relation maps every atom in its left type – the relation is total; otherwise it’s par-
tial. If the right set is the set of atoms in the right type, the relation is onto or surjec-
tive.

A function is just a binary relation with the property that it maps each atom in the left
set to at most one atom in the right set. An injection is a binary relation whose trans-
pose (mirror image) is a function: that is, it maps at most one atom in the left set to an
atom in the right set. Conventionally, the term ‘injection’ refers to a injective function,
but it’s convenient to use the term more loosely.

Finally, some properties that apply only to binary relations. A homogeneous binary
relation is reflexive if it relates every atom to itself – that is, every atom that belongs to
the type of the columns. It’s symmetric if whenever it relates a to b, it also b to a, and
anti-symmetric if it can only relate a to b and b to a when a and b are the same atom.
It’s transitive if whenever it relates a to b, and b to c, it also relates a to c. It’s an equiv-
alence if it’s reflexive, anti-symmetric and transitive.

2.1.6 Modelling Structural Features with Relations

Relations are used to model many different structural features:

· Containment. To express containment, you can define a binary relation that relates
a to b when a contains b. The relation would be injective for a tree structure, in
which no component is shared between containers, and homogeneous for a recur-

18

sive hierarchy. For example, the relation folderContents of type 〈FOLDER,MSG〉 might
model the relationship between folders and the messages they contain in an email
client. To express the idea that folders can themselves contain folders, we might
declare a type OBJECT, and give folderContents the type 〈OBJECT, OBJECT〉.

· Labelling. To express labelling of entities with attributes, you can use a heteroge-
neous function from the entity to its attribute. Naming is a common form of
labelling; a function of type 〈X, name〉 attaches names of type Name to atoms of type
X. The function is total if every entity is named, and injective if names are unique.
For example, the relation ipAddr of type 〈MACHINE,IP〉 may map machines to their IP
addresses. Problems arise because this relation is often not a function (IP addresses
change over time), not total (not all machines have IP addresses), and not injective
(two machines can end up with the same address).

· Grouping. To form a collection of atoms into a single group, you can use a set: that
is, put the atoms into a one-column table. To form a group of groups, you can use a
binary relation that relates two atoms when they are in the same group. If the group-
ing forms a partition – that is, each atom is in exactly one group – the relation will
be an equivalence. A labelling function implicitly defines a grouping equivalence: the
relation that relates two atoms when they have the same label. This suggests anoth-
er way to define a grouping: introduce a type of atoms that represent the groups, and
a function that maps each atom to the group it belongs to. For example, the relation
conflicting of type 〈MACHINE,MACHINE〉 may relate two machines when they share
the same IP address.

· Linking. Often, we want to capture a relationship between peers in which neither
plays a superior role. The relation we use is typically less constrained. Topological
structure – of a communications network, train track layout, call forwarding data-
base, for example – can be modelled as a homogeneous relation, often uncon-
strained, or constrained only by a global property, such as lack of cycles, or con-
nectedness. Undirected links are expressed with symmetric relations. For example,
the relation linkedTo of type 〈URL,URL〉 may model the links present in a web site.

2.2 Operators for Expressions and Elementary Formulas

Expressions in Alloy are just like mathematical expressions, constructed by nested
applications of operators to variables. All expressions denote relations, so every oper-
ator takes one or more relations and yields a relation. Although Alloy can easily express
state changes (as we’ll see in Chapter), this is done without side-effects: variables don’t
vary.

Operators fall into two categories. For the ‘set’ operators, the tuple structure of a rela-

19

tion is irrelevant; a relation might as well be a set of atoms. For the ‘relational’ opera-
tors, the tuple structure is essential to the operator’s definition.

2.2.1 Set Operators

We’ll use the standard operators on sets – union, intersection and difference – but
write them in ASCII form: + (union), & (intersection), and - (difference). Each of these
operators expects its arguments to have the same type. You can’t take the union of rela-
tions with different arity, for example, or of relations whose columns have types that
don’t match. Their interpretation is standard: a tuple is in p+q for example if and only
if it is in p or in q; a tuple is in p&q for example if and only if it is in p and in q; a tuple
is in p-q for example if and only if it is in p but not in q.

For sets s and t – unary relations, remember – the expression s+t is just the combined
set of atoms. For scalars a and b – unary, singleton relations – the expression a+b is the
set containing a and b (which would be written {a,b} in standard mathematical nota-
tion). For binary relations p and q, the expression p+q combines the mappings: it maps
x to y when p does or when q does. So if p and q are functions, for example, p+q need
not be.

Relations can be compared by testing whether the tuples of one relation also belong to
another. The formula p in q is true when every tuple of p is also a tuple of q. In other
words, viewed as sets of tuples, p is a subset of q. Equality is just containment in both
directions; p=q is true when both p in q and q in p are true.

Our typing rules require that p and q have the same type. But since we treat scalars as
singleton sets, we can write a in s when a is a scalar and s is a (non-scalar) set. The
keyword in was picked to capitalize on this pun: it can mean subset or membership.
There’s no risk of confusion because there are no sets of sets in Alloy.

2.2.2 Relational Operators

The quintessential relational operator is composition, or join. Let’s see how to combine
tuples before we combine relations. The join of two tuples

(s1,…, sm)

(t1,…, tn)

exists if the last atom of the first tuple (that is, sm) matches the first atom of the second
tuple (that is, t1) If so, it’s the tuple that starts with the atoms of the first tuple, and fin-
ishes with the atoms of the second, omitting just the matching atom:

(s1,…, sm-1,t2,…, tn)

20

The join p.q of relations p and q is the relation you get by taking every combination of
a tuple in p and a tuple in q, and including their join, if it exists. The relations p and q
may have any arity, so long as they aren’t both unary (since that would result in a rela-
tion with no columns at all!). The right type of p must match the left type of q.

This is a generalized definition of the standard join operator. It may look unfamiliar,
but in its specific applications, it reduces to well-known operators. For a set s and a
binary relation r, the join s.r gives the set of atoms that r maps atoms in s to – the
relational image of s under r. The reverse application, r.s, gives the set of atoms that
are mapped by r to atoms of s. For binary relations p and q, the join p.q is the standard
relational composition of p and q.

The transpose ~r of a relation r takes the mirror image of a relation, forming a new
relation by reversing the order of each tuple. It has no effect on a relation that is unary
or symmetric.

The transitive closure ^r of a binary relation r is the smallest relation that contains r
and is transitive. Closure can be defined in terms of join; it’s the limit of the series

r + r.r + r.r.r + …

The reflexive transitive closure *r is the smallest relation that contains r and is both
transitive and reflexive, so it’s just like ^r but includes additionally a mapping from
every atom to itself.

The product p->q of two relations p and q is the relation you get by taking every com-
bination of a tuple from p and a tuple from q and concatenating them. In other words,
it’s like join, but without the matching and dropping of the intermediate atom. Again,
this operator reduces to more familiar operators in special cases. For two sets s and t,
the product s->t is just the standard cartesian product. For two scalars a and b, the
product a->b is the pair whose first element is a and whose second element is b; a->b-
>c is a triple, and so on.

2.2.3 Navigation Expressions

Note that the meaning of the join the join s.r is unaffected by s being a scalar. This
gives a nice uniform syntax to ‘navigation’ expressions. Suppose we have some relations
f andg that we want to think of as ‘fields’ of objects. Then for a given object x, the
expression x.f.g denotes the set of objects you get by starting at x and following f and
then g. The result may be no objects, one object or more than one; the syntax is the
same. In most other notations, scalars and sets are treated differently, and some even
treat functions differently from relations. Then questions arise about what to do if x.f
is ‘undefined’ because the function f doesn’t map x, or how to ‘collect’ the results of
applying g if x.f results in a set rather than a single object. Treating sets, scalars and

21

functions all as special cases of relations eliminates these problems, along with the
need for extra syntax to convert back and forth between sets and scalars.

2.2.4 Partial Functions

Many designers of modelling languages have grappled with the question of what it
should mean if you apply a partial function to a value outside its domain. As the old
logical conundrum goes: if France has no king, then is it true of false that the King of
France is bald?

Alloy sidesteps this problem. For a scalar x and a function f, if x does not belong to the
left set of f, the expression x.f will simply denote the empty set. So if y is another
scalar,

x.f = y

will be false, because the expression on the left-hand side of the equation denotes an
empty set, and the expression on the right-hand side denotes a singleton set.

2.3 Relational Constants

There are three relational constants in Alloy: the empty relation that contains no tuple,
the universal relation that contains every tuple, and the identity relation that maps each
atom to itself. Because these constants are used in expressions with variables, they have
types. These types must be given explicitly.

The expressions

none [e]

univ [e] iden [e]

represent the empty relation with the same type as the relation given by the expression
e, the universal relation with the same type as e, and the identity relation whose left and
right types are the same as the type of e. Note that the identity relation is binary, and
type specified is ‘half ’ of its type; the other relations can have any arity (except 0 of
course).

2.3.1 Examples

Take our sample relations from before:

relation akiva

22

type 〈PERSON〉
value {(AKIVA)}

relation daniel

type 〈PERSON〉
value {(DANIEL)}

relation feb11

type 〈DATE〉
value {(FEB-11)}

relation parents

type 〈PERSON,PERSON〉
value

{(AKIVA,CLAUDIA),(AKIVA,DANIEL),(BECCA,CLAUDIA),(BECCA,DANIEL)}

relation birthdayBook

type 〈PERSON,PERSON,DATE〉
value {(AKIVA,DANIEL,MAY-7),(AKIVA,BECCA,FEB-11),(DANIEL,CLAU-

DIA,SEP-28)}

Then here are some expressions and their values:

expr akiva.parents

meaning akiva’s parents

value {(DANIEL),(CLAUDIA)}

expr akiva.parents.~parents

meaning akiva’s parents’ children

value {(AKIVA),(BECCA)}

expr akiva.birthdayBook

meaning akiva’s birthday book

value {(DANIEL,MAY-7),(BECCA,FEB-11)}

expr (akiva.birthdayBook).feb11

meaning the person who’s birthday is feb-11 in akiva’s birthday

book

value {(BECCA)}

And here are some formulas that are true if the variables have the values given above:

akiva.parents = claudia + daniel

(akiva->daniel) in parents

(akiva->becca->feb11) in birthdayBook

Here are some formulas that define family relationships from the parents relation, and

23

two sets Person and Woman denoting the sets of all persons and women respectively:

grandparents = parents.parents

children = ~parents

ancestors = ^parents

descendants = ~ancestors

Man = Person - Woman

mother = parents & (Person->Woman)

father = parents & (Person->Man)

siblings = parents.~parents - iden [Person]

cousins = grandparents.~grandparents - siblings - iden [Person]

uncle = parent.sibling & Man

2.4 Compound Formulas: Logical Operators and Quantifiers

We’ve seen how to make a formula from two expressions using in and = to compare
two relations. Larger formulas are made from smaller formulas by combining them
with the standard logical operators, and by quantifying formulas that contain free vari-
ables over bindings.

2.4.1 Logical Operators

!F // negation: not F

F && G // conjunction: F and G

F || G // disjunction: F or G

It’s useful to have a variety of implication operators:

F => G // implication: F implies G; same as !F || G

F <=> G // biimplication: F when G; same as F =>G && G => F

F => G,H // if F then G else H; same as F => G && !F => H

2.4.2 Quantifiers

Intuitively, the quantified formula all x:e | F is true when F holds for every binding
of x to a scalar drawn from the set denoted by the expression e. Since, as we explained
above, sets are represented by unary relations, and scalars by singleton sets, each value
that x is bound to is actually a relation – a relation like {(a)} for an atom a such that
(a) is a tuple in e. Quantified variables are always bounded by an expression; you can’t
quantify over a type.

24

The various quantifiers in Alloy are:

all x: e | F // universal: F is true for every x in e

some x: e | F // existential: F is true for some x in e

no x: e | F // F is true for no x in e

sole x: e | F // F is true for at most one x in e

one x: e | F // F is true for exactly one x in e

Several variables can be quantified over at once. For example,

one x:e, y:f | F

means that there is one way to pick x and y– a unique pair of values – that makes F
true. The keyword disj before the declaration marks the variables as disjoint, so

all disj x,y: e | F

says that F holds whenever x and y are given different values drawn from e.

Quantifiers can be applied to expressions too:

all e // e contains every tuple; same as e = univ[e]

some e // e contains some tuple; e is non-empty

no e // e contains no tuple; e is empty

sole e // e contains at most one tuple

one e // e contains exactly one tuple

2.4.3 Comprehensions

Comprehensions construct values directly from properties. The expression {x: e | F}
denotes the set of atoms x from e for which F holds, or more precisely, it denotes the
relation that includes the tuple (a) if F holds when x has the value {(a)}. More than
one variable can be declared; {x: e, y: f | F}, for example, creates a binary rela-
tion.

2.4.4 Higher-Order Quantifiers

So far, we’ve assumed that the bounding expression in a quantified formula denotes a
set (is unary, that is). It may actually denote any relation. But if it denotes a non-unary
relation, the quantifier is interpreted as second-order, and the value of the quantified
variable is not restricted to singletons. Even with a set as the bounding expression, you
can make the quantifier second-order by inserting the keyword set in the declaration.
This formula, for example,

all x: set e | F

25

says that F is true for every binding of x to a subset of e.

2.4.5 Implicit Conjunction

A list of formulas given within curly braces is implicitly conjoined: {F G} is equivalent
to F&& G. When a formula list follows a quantifier, the vertical bar can be omitted, so

all x: e {F G H}

for example, is equivalent to

all x: e | F && G && H

2.4.6 Examples

Example. For relations spouse and parents that map a person to his or her spouse and
parents, and sets Person and Woman representing the set of all persons and women, the
following formulas encode various properties of human relationships:

// no polygamy

all p: Person | sole p.spouse

// a married person is his or her spouse’s spouse

all p: Person | some p.spouse => p.spouse.spouse = p

// no incest

no p: Person | some (p.spouse.parents & p.parents)

// a person’s siblings are those persons with the same parents

all p: Person | p.siblings = {q: Person | q.parents = p.parents} -

p

// everybody has one mother

all p: Person | one p.parents & Woman

// somebody is everybody’s ancestor

some x: Person | all p: Person | x in p.*parent

Here’s an illustration of a higher-order quantifier – a formula that states the associa-
tivity of join for binary relations:

all p, q, r: T->T | (p.q).r = p.(q.r)

26

2.5 Discussion

Does Alloy’s treatment of partial functions solve the age-old problem?

Not really; it just sidesteps it, exloiting the first-order nature of the language. If we had
to admit sets of sets, we wouldn’t be able to treat scalars as singleton sets.

In practice, the approach does seem to work well. There’s no need for an ‘undefined’ or
‘null’ value, and no need to tamper with the logic by having formulas that are neither
true nor false. The equation

x.f = x.f

is always true, as expected, and when f is a function

some x: S, y: T | x.f = y

is equivalent to

some x: S, y: T | x->y in f

(which is not true for some other languages).

There are occasional nasty surprises. For example,

no x: Person | x.wife in x.sibling

which we might think merely rules out incest also requires every person to be married,
since x.wife will be the empty set if x is not mapped by wife, making the formula
inside the quantifier vacuously true. (Exercise for the reader: what should be added to
the formula to eliminate this problem?)

Why are relations typed?

So far, we’ve used types only in passing to show the shape of a relation. Improving read-
ability is one important use of types, but there are more powerful ones.

Alloy’s type checker will rule out certain models. Some of these are meaningless. For
example, you can’t form the union of two relations with different arities, and you can’t
join two unary relations. Others have meanings, but they’re ruled out because they’re
probably erroneous. For example, the rule for join says that p.q is well-typed if the
right type of p matches the left type of q. If this isn’t true, the join may still be perfect-
ly well defined: so long as both aren’t unary, it will be the empty relation. But this is
almost certainly an error, and little is gained by allowing it.

More controversially, the type rules won’t allow the union of these relations:

27

relation containedMsgs

type 〈FOLDER, MSG〉

relation containedFolders

type 〈FOLDER, FOLDER〉

To allow this kind of union would require a more elaborate type system. In practice,
you’d simply declare a type that subsumes folders and messages, which would be
declared as subsets. Then the two relations have the same type, and the union is per-
mitted. The consequence of the typing rule is therefore a loss of expressiveness in the
type declarations, so that some errors that might have been found by type checking will
not be found.

Why do the relational constants take expressions as arguments?

You may wonder why the empty relation, for example, is written none[e] for some
value expression, rather than something like none[PERSON] (to denote the empty set of
persons), where PERSON is the name of a type. As we’ll see in Chapter 3, types are actu-
ally never named explicitly in Alloy, so the identifier PERSON isn’t available. It’s also
often convenient to be able to use an arbitrary expression; to say that the relation r is
reflexive, for example, you can write

iden[r] in r

Of course, it would be nice if no argument were necessary at all, and the types were
inferred. We decided not to do this, since the type checker already infers types of vari-
ables, and the extra complexity of inferring types of constants seemed unwarranted.

28

Chapter 3: Language

3.1 General Structure

Here’s a model inspired by Paul Simon’s 1973 song ‘One man’s ceiling is another man’s
floor’. It includes all the gross structural elements of an Alloy model:

1 -- first Alloy example

1.1 module CeilingsAndFloors

1.2 sig Platform {}

1.3 sig Man {ceiling, floor: Platform}

1.4 fact {all m: Man | some n: Man | Above (n,m)}

1.5 fun Above (m, n: Man) {m.floor = n.ceiling}

1.6 assert BelowToo {all m: Man | some n: Man | Above (m,n)}

1.7 run Above for 2

1.8 check BelowToo for 2

Line 1 is a comment. Line 1.1 declares the name of the module. Alloy has a simple
module system that allows a model to be composed of text from different files; in this
case, the module is self-contained.

Lines 1.2 declares a signature: a set, Platform, and with it, implicitly, a basic type,
PLATFORM say. Line 1.3 declares another signature, a set Man, also with its basic type, MAN
say. This signature declaration also introduces two relations, ceiling and floor, each
of type 〈MAN,PLATFORM〉.

Line 1.4 introduces a fact: a formula that constrains the values of the sets and relations.
Line 1.5 declares a function: a parameterizable formula intended to be used elsewhere.
Note that the body of the fact uses the function. The assertion in line 1.6 specifies a for-
mula that is intended to be valid: in other words, it’s a consequence that’s supposed to
follow from the facts. The last two lines are commands: line 1.7 instructs the tool to
find an instance of the Above function using 2 atoms in each basic type, and line 1.8
instructs it to search for a counterexample of the assertion.

The function Above relates a man m to a man n when m is above n, by virtue of m‘s floor
being n’s ceiling. The fact formalizes the statement ‘One man’s ceiling is another man’s
floor’, on the assumption that Paul Simon didn’t mean that there is exactly one man
whose ceiling is another’s floor, but rather than every man’s ceiling is another man’s
floor. The assertion claims that the converse holds: that one man’s floor is another
man’s ceiling. In fact, it’s not valid, and the tool finds a counterexample.

29

Let’s now delve into some detail to understand the elements of a model.

3.2 Signatures and Fields

A declaration of the form

sig S {…}

introduces a signature S, consisting of a basic type and a set of atoms drawn from that
type. The basic type can’t be referred to explicitly; types of expressions are inferred in
Alloy. So the identifier S always refers to the set.

A signature may include declarations of fields. Each field declaration introduces a rela-
tion whose left type is the signature type. So the field f in the signature S here

sig S {f: T}

sig T {}

is a relation from the type of S to the type of T. The signature creates a local namespace,
so that a different field with the same name could be declared in another signature and
would represent a different relation.

3.2.1 Implicit Facts

There are some implicit facts in this declaration that limit the possible values of the
relation. Declaring f in S not only makes the type of S the left type of f, but also con-
strains the left set of f to be a subset of the set S. The mention of T on the right-hand
side of the declaration likewise constrains the right set of f to be a subset of T. In other
words, f maps atoms in S to atoms in T – not very surprising.

A final implicit fact is that f is constrained to be a total function: it maps each atom in
S to exactly one atom in T. To weaken this constraint, you can insert a keyword after
the colon: option to say that each atom of S is mapped to at most one atom of T, or set
to eliminate the constraint entirely. These rules may seem funny, but they have an intu-
itive effect: with the declaration as shown, s.f will be a scalar in T when s is a scalar in
S, a scalar or empty when option is included, and a set when set is included.

Using analogy with object-oriented languages, we’ll say that the expression s.f deref-
erences s with the field f.

Example. Given this declaration

sig Person {spouse: option Person, parents: set Person}

30

the expression p.spouse for a scalar p in Person will be empty or a scalar, and p.par-
ents will be any set.

Example. These declarations and fact introduce 2 sets and 3 relations:

sig Person {name: Name, pets: set Pet}

sig Pet {name: Name}

fact {all p: Person | no p.name & p.pets.name}

In the body of the fact, the first occurrence of the identifier name refers to the name rela-
tion of Person, and the second refers to the name relation of Pet. It says that persons
don’t share names with their pets.

3.2.2 Resolving Field Overloading

Sometimes there isn’t enough context to disambiguate field names, and in that case we
write S$f to refer to the field f of signature S. Suppose we want to say that the spouse
relation is symmetric: that if p is the spouse of q, then q is the spouse of p. We can write
it like this:

fact {all p, q | p = q.spouse => q = p.spouse}

or more succinctly like this:

fact {Person$spouse = ~Person$spouse}

In the second formulation, without the explicit mention of Person, it would not be pos-
sible to determine which signature the field spouse belongs to.

3.2.3 Ternary Fields

So far, our fields have corresponded only to binary relations. The field f in this decla-
ration:

sig S {f: T -> U}

sig T {}

sig U {}

is a ternary relation whose column types are the types of S, T and U respectively. Given
a scalar s from the set S, the expression s.f will denote a binary relation whose left set
is a subset of T and whose right set is a subset of U. In this case, there is no implicit fact
constraining s.f to be a singleton.

Perhaps you’ve noticed that what appears on the righthand side of a field declaration is
(so far at least) just an expression, albeit with the possible addition of the keywords

31

option and set when the expression denotes a set. You can put just about any expres-
sion there; to declare a field that’s a 4-relation, for example, you might write

sig S {f: T -> U -> V}

3.2.4 Multiplicity Markings

When a field maps an atom to a relation, it’s often convenient to impose some basic
cardinality properties on the relation in the declaration itself. We’ll use the multiplici-
ty markings ? (zero or one), ! (exactly one) and + (one or more). Imagine that m and n in
the declaration of f are replaced by multiplicity markings:

sig S {f: T m->n U}

These markings say that s.f maps m atoms in T to each atom in U, and maps each atom
in T to n atoms in U. So to make the relation s.f a function, for all scalars s in S, we’d
choose ? for m. For a total function, we’d choose !; and for an injection, we’d choose ?
for n.

Example. The multiplicity markings in this declaration:

sig Person {birthdayBook: Person ->? Date}

constrain p.birthdayBook to be a partial function: that is, a person’s birthday book has
at most one entry for each person.

Despite the similarity in appearance between dereferences in Alloy and in Java,
remember that the join operator is defined for arbitrary sets (and indeed relations). In
particular, if s denotes a set of atoms, s.f can be thought of as the union of the sets or
relations x.f for each atom x in s.

Example. Here are some funky uses of the dot operator:

sig Person {birthdayBook: Person ->? Date}

fact {all p: Person | some q: p.birthdayBook.Date | p in

q.birthdayBook.Date}

fact {all p: Person | p in p.birthdayBook.Date.birthdayBook.Date}

Both facts say that same thing: that every person appears in the birthday book of at
least one of the persons whose birthday is listed in his or her book. The first says it
more conventionally, albeit forming the join of the expression p.birthdayBook to
extract its left set. The second takes full advantage of the join operator. The expression
p.birthdayBook.Date denotes the set of persons in the birthday book of p; derefer-
encing this with birthdayBook gives the relation that includes the mappings of all
those persons’ birthday books. Finally, dereferencing with Date gives the set of persons
with birthday in any of those books.

32

We’ll see more examples of multiplicity markings in Section 3.4.

3.3 Signature Extension

A declaration like

sig T extends S {…}

introduces a subsignature T of the signature S. Declaring a subsignature doesn’t intro-
duce any new types. The new subsignature (here T) is just a set, constrained to be a
subset of its supersignature (here S), and its type is the same as the type of the super-
signature.

Subsignatures may themselves have subsignatures:

sig S {}

sig T extends S {…}

sig U extends T {…}

Taking the supersignature of a signature repeatedly, you end up eventually at a signa-
ture without a supersignature – the root signature. Here, S is the root signature of T and
U. The type of a signature is determined by the type of its root.

Declaring a field in a subsignature is like declaring it in the root signature, with an
implicit fact constraining the left set of the field to be a subset of the subsignature. In
other words, the field maps only atoms in the subsignature. This declaration of f

sig X {}

sig S {}

sig T extends S {f: X}

constrains f to map only atoms in the set T, exactly as if we’d recorded a fact

fact {all s: T-S | no s.f}

or more succinctly

fact {S$f.X in T}

Note that the explicit name of the field is S$f and not T$f: fields are disambiguated by
type, and only root signatures have distinct types. You can’t declare a field with the
same name in two subsignatures of the same signature, since there is only one name-
space between them, and it would not be possible to resolve the names.

Moreover, subsignatures are not necessarily disjoint. To say that two subsignatures are

33

mutually disjoint, the keyword disjoint is attached to each of their declarations.

Example. To classify persons into disjoint sets of men and women, to give each per-
son a mother and father, and to have a man be his wife’s husband and vice versa, we
might write:

sig Person {mother: Woman, father: Man}

disj sig Man extends Person {wife: option Woman}

disj sig Woman extends Person {husband: option Man}

fact {Person$wife = ~Person$husband}

Since a field declared in a subsignature belongs, according to its type, to the root sig-
nature, we don’t have to worry about applying it only to atoms of the subsignature. The
expression p.wife, for example, will just denote the empty set when p is in the set
Woman. To say that nobody is married to him or herself, for example, we can write

fact {no p: Person | p in p.(wife+husband)}

without the kinds of downcast that would be needed were our signatures classes in an
object-oriented language and the fields instance variables.

To indicate that a signature contains exactly one atom, mark it as static. You can
declare several subsignatures at once if they don’t declare fields.

Example. To declare a set of colours, including red, green and blue, we could write:

sig Colour {}

static disj sig Red, Green, Blue extends Colour {}

3.4 Implicit Dereferencing

Expressions involving several dereferences – that is, applications of the join operator –
can be hard to read. To make them easier on the eye, there are two additional opera-
tors, [] and ::, which mean the same as the dot operator – q[p] is equal to p.q and
p::q – but bind differently. Double colon binds tighter than dot, and square brackets
bind looser.

Example. A person’s birthday book always includes his or her own birthday:

sig Date {}

sig Person {birthdayBook: Person ->? Date}

fact {all p: Person | some p.p::birthdayBook}

If d.next is the date that follows the date d in the calendar, then this says that a per-
son’s birthday book only includes persons born later:

34

sig Date {next: Date}

sig Person {birthdayBook: Person ->? Date}

fact {all p: Person | p.birthdayBook[Person] in

p.birthdayBook[p].*next}

Without the new operators, we could write the last fact with parentheses instead:

fact {all p: Person | Person.(p.birthdayBook) in

p.(p.birthdayBook).*next}

Some formulas repeatedly dereference the same expression. Taking an idea from
Pascal, we can make these more succinct by factoring out the expression being deref-
erenced. The formula

with e | F

is like F, but treats isolated field names as dereferences of e. To determine whether a
field name is isolated, we first consider only fields that might be appropriate derefer-
ences for e (by looking at the type of e, and obtaining the fields of its signature). Then
we check that the specifier hasn’t explicitly indicated that the field isn’t isolated, by
binding it to an expression with a double colon to its left.

Example. The fact above is about the birthday book of person p. In this reformulation,
the identifier birthdayBook is short for p.birthdayBook:

sig Date {next: Date}

sig Person {birthdayBook: Person ->? Date}

fact {all p: Person | with p | birthdayBook[Person] in

birthdayBook[p].*next}

Sometimes with is handy, but like any implicit mechanism, it can make the text more,
not less, inscrutable. You can bind several expressions at once using with, and you can
nest with statements. But you can’t bind two expressions with the same type, since
there would be no way to choose one over the other. So use with judiciously. The most
natural usage is when recording properties for the atoms of a signature with many
fields.

Example. A file system whose objects are either files or directories, with a root direc-
tory and a mapping from each directory to its contents:

sig Object {}

sig FileSystem {

disj files, dirs: set Object,

root: dirs,

contains: dirs -> (files + dirs)

}

35

fact {all f: FileSystem | with f | dirs + files in root.*contains}

This idiom is so common that we allow the fact to be attached to the signature direct-
ly, without the quantifier or the with:

sig Object {}

sig FileSystem {

disj files, dirs: set Object,

root: dirs,

contains: dirs -> (files + dirs)

}{dirs + files in root.*contains}

The implicitly quantified variable is named this, so it can be mentioned explicitly if
necessary. Here again, as an attached fact, is the constraint that a person’s birthday
book lists his or her own birthday:

sig Date {}

sig Person {

birthdayBook: Person ->? Date

}{some this.birthdayBook}

Now that we have with, we can explain field declarations more precisely. Declaring a
field f with an expression E like this

sig S {…, f: E, …}

generates an implicit fact

all this: S | with this | f in E

To make it easy to infer the type of the field, the expression E can only mention the
names of signatures, and fields of S that are declared before f. So the declaration of
contains in FileSystem is short for the fact

all this: FileSystem | with this | contains in dirs -> (files +

dirs)

which is equivalent to

all fs: FileSystem | fs.contains in fs.dirs -> (fs.files +

fs.dirs)

3.5 Functions

A function is a parameterized formula that can be applied by instantiating the param-

36

eters with expressions whose types match the declared parameter types.

Example. Here’s a model of LISP-like lists, in which a non-empty list has a pointer to
the rest of the list (itself a list), and to an element, with a fact ruling out cyclic lists:

sig Elt {}

sig List {}

sig NonEmptyList extends List {next: List, elt: Elt}

fact {all p: List | p !in p.^next}

We can define two functions that correspond to adding an element to the front of a list
(cons) and extracting the first element of a list (car):

fun cons (before, after: List, e: Elt) {

after.next = before

after.elt = e

}

fun car (before: List, e: Elt) {

e = before.elt

}

and now we can apply the functions in an assertion that claims that if you add an ele-
ment to a list, then extract an element, you get back the element you started with:

assert GetBack {all p,q: List, e,f: Elt | cons (p,q,e) && car

(q,f) = f = e}

The uses of the functions cons and car aren’t really ‘applications’ here; they’re predi-
cates relating the inputs and outputs. Alloy lets you write them more naturally as func-
tion applications, in which the inputs to a function are presented to arguments, and the
application expression as a whole is given the value of the output.

Without changing the declarations of the functions, we can apply them like this:

assert GetBack {all p: List, e: Elt | car (cons (p,e)) = e}

To understand this, you need to know that there is a convention that the second argu-
ment in a function declaration is treated as the function’s result. The reason for choos-
ing the second (rather than the last, for example) is that often the type of the first argu-
ment and the result are the same (as in cons), and placing them one after the other
allows them to share a type declaration.

The application of car poses no complications, since, from the form of the body of the
function’s declaration, you can see that car (p) where p is any expression can be
replaced by p.elt.

The application of cons is much trickier. First, its definition is implicit, so an applica-

37

tion can’t be inlined by a simple textual replacement. Second, it’s a non-deterministic
function: it can return any list whose next and elt fields are set appropriately.

Alloy therefore employs the following rule for handling function applications. Suppose
we have a function application expression, E say, of the form

f(a1, a2, …, an)

whose smallest enclosing formula is some formula F. Then the declaration of the func-
tion f must list n+1 arguments, of which the second will be treated as the result. The
entire enclosing formula is taken to be short for

all result: D | f (a1, result, a2, …, an) => F [result/e]

where D is the right-hand side of the declaration of the (second) missing argument, and
F[result/E] is F with the fresh variable result substituted for the application expres-
sion E. The application of f in this elaborated formula is now a formula, and is treated
simply as an inlining of the formula of f.

So in this case, the smallest enclosing formula for the application of cons is

car (cons (p,e)) = e

Desugaring, we get:

all result: List | cons(p,result,e) => car (result) = e

Note the effect of the quantification: our replacement formula says that taking the car
of the result of the cons application gives e for every possible result of the cons. In other
words, a formula involving a non-deterministic function is true when it holds for every
possible result the function may yield.

Now we apply the same rule to desugar the application of car, and we get:

all result: List | cons(p,result,e) =>

(all result2: Elt | car (result, result2) => result2 = e

which, with a bit of rearranging (moving the innermost quantifier out), is the same as
the formula that we wrote initially.

This approach may seem a bit complicated, but it has a nice uniformity. Whether the
function is explicit (equating the result to an expression) or implicit, whether it’s deter-
ministic or not, the treatment is the same. In the simpler cases, one can show that the
treatment reduces to what you’d expect. Inlining the body of car, for example, we get

all result: List | cons(p,result,e) =>

(all result2: Elt | result2 = result.elt => result2 = e

38

which, using a rule of logic (a variant of the ‘one point rule’) can be transformed to

all result: List | cons(p,result,e) => result.elt = e

just as if we’d replaced the application of car by the righthand side of the equality in its
body.

Our scheme seems to give as intuitive a meaning as one could expect from applying a
non-determinstic function, but it does have (at least) one foul outcome: the formula

f(x) = f(x)

is not generally true for non-deterministic functions. It says that two applications of f
to x must give the same result – but they needn’t. So it’s wise to be careful when apply-
ing non-deterministic functions. Sometimes, a function can be made deterministic.
Just adding the fact

fact {all p,q: List | p.elt = q.elt && p.next = q.next => p = q}

to our list model, for example, has the effect of ‘canonicalizing’ lists: it says that there
is only one list with a given elt and next field. The function cons is now determinis-
tic.

Functions are often grouped around the type of the first argument, like the methods of
a class in an object-oriented language. You can declare such a ‘receiver’ argument, and
also a result argument, with the following shorthand:

fun S::f (…):T {…}

The declaration is equivalent to

fun f (this: S, result: T, …) {…}

where this and result are keywords that name the arguments declared anonymous-
ly, and the ellipsis in the new argument list is the old argument list. (Actually, this
expanded declaration is not legal: you can’t declare arguments with these names explic-
itly.) Either receiver or result can be omitted.

You can also apply a function with its first argument presented in prefix position; for
example,

s..f (a,b,c)

is short for

f (s,a,b,c)

These conventions are just trivial shorthands, but they can make a model more read-

39

able. The declaration shorthand is independent of the application shorthand; you can
write the first argument as a prefix in an application whether or not it was declared
receiver-style in the function’s declaration.

Example. Our list functions can be declared like this:

fun List::cons (e: Elt): List {

result.next = this

result.elt = e

}

fun List::car (): Elt {

result = this.elt

}

and applied like this:

assert GetBack {all p: List, e: Elt | p..cons(e)..car () = e}

3.6 Polymorphism

Some models are independent of the meaning of one or more signatures. These signa-
tures don’t have fields and their atoms aren’t constrained by facts. They’re just place-
holders into which any signature could be inserted. When modelling a linked list, for
example, we’re not concerned about what kind of element is stored in the list; the prop-
erties of the list only involve the signature of the atoms that form the backbone of the
list. Such models are generic: their properties hold (or fail to hold!) whatever the prop-
erties of the irrelevant signatures may be.

No special language support is needed for such a model it it stands alone. Signatures
are, after all, uninterpreted. But sometimes we want to build another model from such
a model, in which the generic signature is replaced by a signature whose properties do
matter.

To support this, Alloy allows the elements of a model to be parameterized by one or
more signature placeholders. Uses of these elements can then instantiate the parame-
ters by binding concrete signatures to the placeholders.

Example. Our list model can be recast generically:

sig List[t] {}

sig NonEmptyList[t] extends List[t] {next: List[t], elt: t}

fact [t] {all p: List[t] | p !in p.^next}

fun cons[t] (before, after: List[t], e: t) {

after.next = before

40

after.elt = e

}

fun car[t] (before: List[t], e: t) {

e = before.elt

}

assert GetBack[t] {all p: List[t], e: t | car (cons (p,e)) = e}

The identifier t that appears throughout the model is a signature variable that can
be instantiated with a signature. The generic model can be analyzed in its own right,
however; when the assertion is checked, for example, the analyzer will just substitute a
dummy, concrete signature for the variable.

A generic fact, function, or assertion must be explicitly parameterized by any signature
variables mentioned in its body. The variables are like arguments; the name doesn’t
matter, so long as it’s used consistently. We could have declared car like this, for exam-
ple:

fun car[s] (before: List[s], e: s) {

e = before.elt

}

To use a generic model as part of another model, you instantiate the signature variables
with signature names. There’s no need to instantiate the signature variables when
applying functions; this is done automatically based on the types of the arguments.

Example. A diary containing a mapping from dates to lists of appointments, each of
which holds its time:

sig Time {} sig Date {}

sig Diary {appts: Date -> List[Appt]}

sig Appt {at: Time}

fun Diary::getStart (d: Date): Time {

result = car(this.appts[d]).at

}

The function getStart takes a diary and a date and returns the time of the first apoint-
ment on that date. Note that, in its body, the application of car doesn’t require the sig-
nature variable to be explicitly instantiated. The variable is determined to be bound to
Appt from the type of its first argument.

3.7 Modules

Alloy models are divided into modules. You can, if you like, put your entire model in a

41

single module. All the examples in this chapter will compile if you simply add to the top
of the file a module declaration such as:

module Main

Some models or model fragments are used repeatedly in other models. To make reuse
convenient, and to allow structuring of large models, Alloy allows a model to incorpo-
rate the contents of other modules. For example, the generic lists described above
might be declared in a module Lists; many other models could then use lists without
having to cut-and-paste the text explicitly.

Alloy’s module system is a simplified version of Java’s package system. Modules can be
arranged in a tree, and are given pathnames from the root. The names of the files con-
taining the modules, and their locations in the directory hierarchy, must match the
module names.

Each element in a module – that is, signature, fact, function or assertion – has a qual-
ified name obtained by prefixing the element’s name with the module name. To refer
to an element in the same module, you can use the qualified name, or just the element’s
declared name. To refer to an element in a different module, you must use the quali-
fied name.

To be able to make reference at all to an element from a different module, you must
import the module explicitly at the top of the file. An import declaration with the key-
word use makes the elements of the module available; an import declaration with the
keyword open makes the elements available, and additionally, allows them to be
referred to by their unqualified names.

Example. The generic list elements might be declared in a module library/Lists:

module library/Lists

sig List[t] {}

…

The diary model might then be in a module Diary that imports the module:

module Diary

open library/Lists

sig Time {} …

fun Diary::getStart (d: Date): Time {

result = car(this.appts[d]).at

}

Note that the reference to car doesn’t need to be qualified because the imported mod-
ule was opened. With a uses import instead, a qualified name would be needed:

module Diary

42

uses library/Lists

sig Time {} …

fun Diary::getStart (d: Date): Time {

result = library/Lists/car(this.appts[d]).at

}

3.8 Commands

There are two forms of commands. The check command is used to check an assertion;
its result is a counterexample, if found. The run command is used to find an instance
of a function. Both commands take the name of the assertion or function, and an indi-
cation of the scope in which the analysis is to be performed. For example,

check A for 3

would cause the assertion A to be checked for all configurations in which each basic
type is constrained to have no more than 3 atoms. Individual types can be constrained;
for example

check A for 3 but 2 S, 5 T

says that all types should be constrained to 3 atoms, except for the types associated
with signatures S and T, which are constrained to contain at most 2 and 5 atoms respec-
tively.

3.9 To be added

· Evaluation commands.

· Multiplicity markings in context of implicit dereferencing.

· Argument decl constraints for functions.

· Let expressions. If statements and expressions.

· Explaining decls in polymorphic sigs.

· Explain det fun keyword.

· Instantiation with subsignatures.

· Explain file names for modules. Class path?

· Cardinality operators.

43

44

Chapter 4: Using the Analyzer

An outline of how to use the analyzer with the graphical user interface is given here.
The analyzer is also available in a command-line version, and as a programmatic inter-
face (API) for use as a component in other tools.

4.1 What The Analyzer Does

The analyzer’s basic function is very simple. Given a constraint, it attempts to find a
solution. If it finds one, it displays the solution as a tree of values assigned to variables,
and optionally as a graph of nodes and edges. It can also show the evaluation of each
constituent formula and expression of the constraint. The analyzer includes a rudi-
mentary editor.

4.2 Screen Layout

The screen is divided into 4 panes, each of which can be minimized so that only select-
ed panes are showing. They are: the editor pane, showing the model being analyzed;
the solution pane, showing an expandable tree that represents the solution to a com-
mand that has been executed; the syntax pane, which shows the abstract syntax tree of
the constraint that has just been executed, annotated with the values of each node
under the assignment reported in the solution pane; and the console pane, in which
output from the backend SAT solver is reported.

Compilation errors and the diagrammatic visualization appear in pop-up windows.
There is a status bar at the bottom that reports progress and indicates the position of
the cursor in the buffer.

4.3 Basic Usage Mode

Here’s how the tool is typically used:

· Start by loading a model, either by opening an existing file (with File|Open), or by
creating a new one (with File|New), writing some text, and then saving it (with
File|Save).

45

· Compile the file (with Tools|Build). If there’s a syntax or type error, a window will
pop-up with a list of errors. Click on an error to highlight its location in the source.

· Select a command (from the Command menu). By default, the last command in a file
will be selected, unless you have previously chosen a command, in which case it will
be the default.

· Instruct the analyzer to execute the command (with Tools|Execute). An indication
that a search for a solution is in progress will appear in the status bar. If a solution is
found, it will appear in the solution pane. You can then examine the solution by
expanding nodes in the solution tree. You can also visualize the solution (with
Tools|Visualize).

Note that the analyzer works on files and not buffers: it will refuse to analyze a new
model that you haven’t yet saved, and if you make changes without saving them, it will
remind you to save them if you issue an analysis command, since it will be the file con-
tents and not the buffer that gets analyzed.

4.4 Starting up

To start up the tool, type

java -jar alloy.jar

Depending on your platform, you may be able instead to double-click on the jar (Java
archive) file, or execute a batch file included in the distribution. You can change the
look and feel of the graphical user interface by appending to the command line one of
the following:

-style windows

-style metal

4.5 Commands

Many of the commands have keyboard shortcuts, shown in the menus to the right of
the command. You can cut and paste into the editor from other applications, but be
careful when pasting from an application that does not create plain ASCII text. For
example, if you paste from a Word document, you might have trouble with different
kinds of linebreaks, smart quotes, etc.

46

4.5.1 File Menu

New

Clears the editor pane for the creation of a new model.

Open…

Clears the editor pane, and replaces its contents by the contents of the specified file.

Reload

Replaces the contents of the editor pane with the contents of the file on disk. This is
designed to make it easy to use a separate text editor. Just open the file in the analyzer,
edit it in the separate editor, and to perform an analysis, just reload, build and execute.

Save

Saves the contents of the editor pane as a file on disk. If a name for the file has not been
given, you will be prompted for one.

Save as…

Saves the contents of the editor pane as a file on disk with a given name. The name will
be remembered, so that subsequent saves will be to the file of that name.

Save a copy as…

Saves the contents of the editor pane as a file on disk with a given name. The name will
not be remembered. This allows you to save intermediate versions of your model as
you work on it.

Quit

Closes down the analyzer.

4.5.2 Edit Menu

Cut

Deletes the selected text in the editor buffer and copies it into the paste-buffer.

47

Copy

Copies the selected text into the the paste-buffer, without deleting it from the editor
buffer.

Paste

Pastes the contents of the paste-buffer at the point of the cursor.

Delete

Deletes the selected text without affecting the paste-buffer.

Undo

Undoes the last editing command.

Redo

Replays the last editing command whose effect was undone.

4.5.3 Tools Menu

Build

Compiles the file that was last loaded or saved. If errors were found, a pop-up window
will list the errors and their location in the source text. Click on an error to highlight
its location in the editor pane.

Execute

Executes the command selected in the Command menu.

Edit instance

Displays a dialog that allows you to manually enter a candidate solution to the select-
ed command. When you close the dialog, the tool will evaluate the selected command
for the assignment of valeus to variables specified. You can then use the syntax pane to
examine the values of formulas and expressions.

Visualize

Displays a visualization of the last solution found. The visualization will stay open

48

unless closed, but will not be automatically refreshed when new solutions are found.
The visualization can be customized (see below).

Next solution

Attempts to find an additional solution for the selected command.

Cancel

Cancels the execution of a command that is underway.

4.5.4 Commands Menu

4.5.5 Options Menu

Solve using Chaff

Selects Chaff as the SAT solver to be used for executing commands.

Solve using RelSat

Selects RelSat as the SAT solver to be used for executing commands.

Multiple Solutions

If checked, includes a symmetry-breaking formula in the command so that if multiple
solutions are requested, a solution is omitted if isomorphic to one previously shown.

Detect shared subformulas

Enables an optimization. As far as we know, it always improves performance.

Skolemize inside universal quantifiers

Enables a transformation in which existentially quantified variables that are within uni-
versal formulas are skolemized. Commands involving such formulas will not be ana-
lyzed if this option is not checked.

Remember tree modality

Remembers which nodes in the tree in the solution pane have been opened, so you can
focus on some part of the solution, and examine it for repeated executions without

49

having to renavigate through the tree. Currently, the state of the tree is remembered by
simple textual matching.

Change Text Font

Changes the font in the editor pane.

Change Tree Font

Changes the font used in the trees in the solution and syntax panes, and to label nodes
and edges in the visualization.

Change Tab Width

Changes the width of tabs in the editor pane. Tabs are not converted to spaces, so this
has only a visual effect: the saved file is unaffected.

Save Preferences

Saves the current preferences to a file in the user’s home directory under the name
.alloyguirc.

4.5.6 Help Menu

About…

Displays a splash panel. Help facility under development.

4.6 Solution Tree

The tree in the solution pane gives the values of variables in textual form. At the top-
level, the nodes correspond to the signatures, the arguments of a function if the com-
mand was a ‘run’ command, and skolem constants that give witness values to quanti-
fied variables. Because quantified variables need not have unique names, the tool gen-
erates unique names for skolem constants. Currently the names are not very helpful,
but in most cases, you should be able to guess how they correspond to the variables in
the formula being analyzed.

Each of these nodes has a value that is a set of atoms; click on the node to expand it,
and see the atoms as a subtree. An atom that belongs to a signature with fields can then
clicked on to reveal the value of the atom’s field. In general, this gives a subtree of

50

tuples; you can then examine the atoms in these tuples recursively. If a set is empty, no
children are shown.

4.7 Syntax Tree

The syntax tree is under development. In its current form, it shows the formula that
has been analyzed in the form in which it is represented internally. We plan to make it
more readable.

4.8 Visualization

Selecting the visualization command (Tools|Visualize) opens the visualization win-
dow. The window has two panes. The graph pane shows a solution as a graph of nodes
and edges. The customization pane consists of a collection of subpanes that allow you
to customize the appearance of the graph. The customization commands are as fol-
lows.

4.8.1 Customize/General

View Unconnected Nodes

If checked, nodes that have no incoming or outgoing arrows will be shown; otherwise
they will be hidden.

Save Dot Files

Causes the files generated during visualization to be saved in the format of AT&T’s dot
program, which the analyzer uses for graph layout.

4.8.2 Customization/Type

For each signature that corresponds to a basic type, you can determine:

· whether atoms of this type are shown at all; what shape and colour are used for dis-
playing the atoms as nodes;

· whether the solution is to be projected onto the type;

· what string is to be used as a prefix for the names of atoms of the type; and

51

· whether when displayed as nodes, the atoms should be given the same rank by dot,
so they are displayed at the same level.

Projection is used to enable the display of relations of arity greater than 2. Without pro-
jection selected, a field that corresponds to a relation of arity 3 or more will be dis-
played as a set of nodes corresponding to the tuples of the relation, with edges from the
tuple nodes to their constituent atoms (with numbered edges to indicate the order or
atoms in the tuple). With a given type projected, a separate graph is generated for each
atom in the type. Tuples of higher arity relations are transformed to tuples in which the
atoms of that type have been elided. For example, if a relation has the tuples

a1, b1, c1

a1, b1, c2

a2, b1, c3

then projection of the type A with atoms a1, a2, etc, will result in two graphs. When
a1 is chosen, the graph will include the edges

b1, c1

b1, c2

and when a2 is chosen, the graph will include the edge

b1, c3

You can project on any number of types. There will then be a graph for each combina-
tion of atoms from the projected types.

4.8.3 Customization/Variable

For each set and relation variable, you can determine:

· whether the set or relation is displayed at all;

· what string is used to label the set or relation;

· for a set, whether nodes corresponding to atoms in the set should be given a string
label;

· for a relation, whether tuples should be shown not as edges but instead as attribute
lists inside nodes;

· the colour of a node of edge belonging to the set or relation;

· for a relation, whether edges are labelled.

52

4.8.4 Customization Commands

At the bottom of the customization pane, there are buttons for the following com-
mands:

Generate Graph

Generates a graph from the last found solution using the current cutomization.

New Customization

Clears customization settings, resetting them to their default values.

Save Customization

Saves the current customization settings in a file.

Load Customization

Loads customization settings from a file previously saved.

4.9 Files

The analyzer reads and writes the following files:

· Source files, in whatever directory the user selects.

· Visualization customization files, in whatever directory the user selects.

· Dot files, containing solutions in the format of AT&T’s dot program, in the directo-
ry of the associated source file.

· A preference file holding user interface preferences, under the name .alloyguirc in the
user’s home directory.

· Temporary files generated during solving, in the system’s temporary directory. A
subdirectory is created for each session of the tool’s use, and is deleted on exit.

53

54

Chapter 5: Syntax

5.1 Lexical Issues

Non-alphanumeric characters and whitespace acts as separators. Presence of addition-
al whitespace is irrelevant; linebreaks in particular are equivalent to tabs and spaces.
Keywords and identifiers are case sensitive.

Characters between -- or // and the end of the line, and from /* to */, are treated as
comments.

Identifiers may include any of the alphabetic characters, and, except as the first char-
acter, numbers, underscores and quote marks.

5.2 Grammar

Conventions:

· x… is a sequence of zero or more instances of x.

· x,… is a sequence of one or more comma-separated instances of x.

· [x] is zero or one instances of x.

module ::= moduleDecl import… paragraph…

moduleDecl ::= module [packageName /] moduleName

moduleName ::= id

packageName ::= dir… id

dir ::= id /

import ::= (open | uses) packageSpecifier

packageSpecifier ::= packageName [/*]

paragraph ::= signature | fact | assertion | function | run |

check | eval

signature ::=

[static] qualifier,… sig signame [typeparams] [extension] {

decl,… }

[formulaseq]

55

typeparams ::= [typeparam,…]

extension ::= extends sig,…

fact ::= fact [paraname] [typeparams] formulaseq

assertion ::= assert [paraname] [typeparams] formulaseq

function ::=

[det] fun [thisarg] paraname [typeparams]

([decl,…]) [: multexpr] formulaseq

thisarg ::= sig . | sig ::

run ::= run paraname [scope] [excluded] [expect number]

check ::= check [paraname] [scope] [excluded] [expect number]

eval ::= eval paraname using paraname [scope] [excluded]

scope ::= for [number but] typescope,…

typescope ::= number (sig | int)

excluded ::= without global,…

global ::= facts | constraints | paraname

decl ::= var,… compop multexpr | qualifier… var,… : multexpr

qualifier ::= part | disj | exh

multexpr ::= [setmult] expr | expr [mult] -> [mult] expr

setmult ::= set | option | scalar

letdecl ::= var = expr

expr ::= var | sig $ var | unop expr

| expr binop expr | expr [expr]

| { decl,… [formulabody] }

| (expr)

| invocation | this | result | sig

| with expr,… | expr

| let letdecl,… | expr

| (none | univ | iden) [expr]

| if formula then expr else expr

| Int intexpr

invocation ::= [expr ..] paraname ([expr,…])

intexpr ::= number | # expr | sum expr | int expr

| (intexpr)

| if formula then intexpr else intexpr

| intexpr intop intexpr

| sum decl,… | intexpr

| with expr,… | intexpr

| let letdecl,… | intexpr

56

intop ::= + | -

formulabody ::= formulaseq | | formula

formulaseq ::= { formula… }

formula ::= expr compop expr

| intexpr intcompop intexpr

| (formula)

| neg formula | formula logicop formula | formula thenOp formula

[elseOp formula]

| formulaseq

| quantifier decl,… formulabody

| with expr,… formulabody

| let letdecl,… formulabody

| quantifier expr

| invocation

thenOp ::= => | implies

elseOp ::= else | ,

neg ::= not | !

logicop ::= && | || | iff | <=> | and | or

quantifier ::= all | no | some | sole | one | two

binop ::= + | - | & | . | :: | ->

unop ::= ~ | * | ^

mult ::= ! | ? | +

compop ::= [neg] (: | = | in)

intop ::= [neg] (= | =< | >= | < | >)

signame ::= ([packageName /] id) | Int

sig ::= signame | paramsigname | typeparam

paramsigname ::= signame [sig,…]

paraname ::= id

var ::= id

name ::= id

typeparam ::= id

57

5.3 Precedence and Associativity

Precedence order for formula operators (tightest binding first):

!, &&, =>, <=>, ||

Precedence order for expression operators (tightest binding first):

::, ~/*/^, . , [], ->, &, +/-

Associativity:

-, & to the left

:: and . to the left (essential for type inference)

=> to the right

other operators are associative

58

