CSE503: Software Engineering

David Notkin
University of Washington
Department of Computer Science \& Engineering
Winter 2002

Key notations for proofs

- The two most common notations are Hoare triples and Dijkstra weakest preconditions (or predicate transformers)
- We'll focus primarily on Hoare triples
- A Hoare triple is a logical predicate: $\{\mathbf{P}\} \mathbf{S}\{\mathbf{Q}\}$
- \mathbf{P} and \mathbf{Q} are predicates, S is a program
- $\{\mathbf{P}\} \mathbf{S}\{\mathbf{Q}\}$ is true when
- if \mathbf{P} is true, then after S executes, \mathbf{Q} is true

Another example:
 true or false?

$\{x<>0\}$
if x > 0 then
$\mathrm{x}:=\mathrm{x}+1$
else
$\mathrm{x}:=-\mathrm{x}$
fi
$\{x>0\}$

Proving programs correct

- Primary characterization

Given a specification (in a formal logic) and
an implementation (in a programming language),
prove that the
implementation satisfies the specification

- Alternative characterization

```
{ true }
x: int;
read (x);
if (mod}(x,2)=1) the
    x := x + 1;
fi
{ even(x) }
```

- Given the specification,
- derive (construct) a program that satisfies the specification

Examples

(Note: \mathbf{X}, \mathbf{Y} are constants)

- True Hoare triples
$-\{$ true $\} y:=x * x\{y>=0\}$
$-\{x>0\} x:=x+1\{x>1\}$
$-\{x>1\} x:=x+1\{x>0\}$
$-\{x=X$ and $y=Y\}$
$\begin{array}{rl}t & :=x ; \\ \{x= & =y ; \\ y & y\end{array}=t$; $\{x=Y$ and $y=X\}$
- False Hoare triples
$-\{$ true $\}$ y : $=x * x\{y<0\}$
$-\{x=X$ and $y=Y\}$
t :=x; $x:=y ; y:=t$; $\{x=Y$ and $t=Y\}$

Meaning of assignment

- We must precisely define the meaning of the assignment operator used in the programs
- Back-substitution is the basic approach
- Consider the triple $\{\mathbf{P} \boldsymbol{P}\} \mathrm{x}:=\exp \{\mathbf{Q}(\mathrm{x})\}$
$-\mathbf{P}$? is an unknown precondition
$-\mathbf{Q}$ is the postcondition that may be parameterized in terms of the program variable x
- For $\mathbf{Q (x)}$ to be true requires that P ? be equal to $\mathbf{Q}(\exp)$ as a precondition

Examples

- $\{P \mathbf{P}\} \mathrm{x}:=\mathrm{x}+1\{\mathrm{x}>\mathbf{1}\}$
$-\mathbf{Q}(\mathrm{x})=\mathrm{x}>1$
- So \mathbf{P} ? $=\mathbf{Q}(\mathrm{x}+1)=\mathbf{x}+\mathbf{1}>\mathbf{1}=\mathbf{x}>\mathbf{0}$
- $\{P ?\} Y:=x *_{x}\{y>=0\}$
$-\mathbf{Q}(\mathrm{y})=\mathbf{y}>=\mathbf{0}$
- So \mathbf{P} ? $=\mathbf{Q}\left(\mathrm{x}^{*} \mathrm{x}\right)=\mathbf{x}^{*} \mathbf{x}>=\mathbf{0}=$ true
- This is technically handled by the "proof rule"
$-\{\mathbf{B}[\mathrm{a} / \mathrm{X}]\} \mathrm{X}:=\mathrm{a}\{\mathbf{B}\}$
- Where $\mathbf{B}[\mathrm{a} / \mathrm{X}]$ represents the predicate \mathbf{B} with all free occurrences of X replaced by a

Meaning of conditionals

- There are also proof rules for $\{\mathbf{P}\}$ if C then $S 1$ else $S 2\{\mathbf{Q}\}$
- If we can prove
$-\{\mathbf{P}$ and $\mathbf{C}\} \mathrm{S} 1\{\mathbf{Q}\}$ and also
$-\{\mathbf{P}$ and not $\mathbf{C}\} \mathrm{S} 2\{\mathbf{Q}\}$
- Then we have proven the triple

Example

- $\{\mathbf{x}<>0\}$
if x > 0 then $\mathrm{x}:=\mathrm{x}+1$ else $\mathrm{x}:=-\mathrm{x}$
$\{x>0\}$
- $(P$ and $C) \quad=(x<>0$ and $x>0)$

$$
=(\mathbf{x}>\mathbf{0})
$$

- $\{x>0\} x:=x+1\{\mathbf{x}>0\}$ [trivially true]
- $(P$ and not $C)=(x<>0$ and $\operatorname{not}(x>0)$ $=(x<>0)$ and $(x<=0)$ $=(\mathrm{x}<0)$
- $\{\mathbf{x}<\mathbf{0}\} \mathrm{x}:=-\mathrm{x}\{\mathbf{x}>0\}$ [trivially true, QED]

Proving programs

- The basic approach to proving a program correct using Hoare triples is to
- start with the precondition \mathbf{P}, the postcondition Q , and the program S
- S usually consists of a sequence of statements
- One then introduces additional intermediate assertions between the statements
$-\{\mathbf{P}\}$ S1;S2;S3;S4 \{Q\}
$-\{\mathbf{P}\}$ S1 $\{\mathbf{A} 1\}$ S2 $\{\mathbf{A} 2\} \mathrm{S} 3\{\mathbf{A} \mathbf{3}\} \mathrm{S} 4\{\mathbf{Q}\}$
- Then prove each triple (they are associative).

Some additional proof rules

- What is the semantics of the programming language construct ;
$-(\{P 1\} S 1\{P 2\}$ and $\{\mathbf{P} 2\}$ S2 $\{\mathbf{P} 3\})$ implies \{P1\}S1; S2\{P3\}
- Also, if P0 implies P1 in addition, then we also can prove $\{\mathbf{P 0} \mathbf{S}$ S1; $\mathbf{S} 2\{\mathbf{P} 3\}$

Loops

- Loops are the biggest challenge in proving correctness, since we can not write simple proof rules because the number of iterations through a loop is in general unbounded
- One issue is proving that the loop terminates; this is usually done separately from the proof about the program's computation
- We have to introduce an added assertion, called a loop invariant; it is not generally possible to compute these, so they have to be chosen carefully to allow the proof to go through

Termination

- Weak (or partial) correctness: the proof of $\{\mathbf{P}\} \mathbf{S}\{\mathbf{Q}\}$ assumes that S terminates
- Strong (or total) correctness: Termination of S is proven
- Example: weakly correct but not known to be strongly correct
$\{x>0\}$
$\mathrm{y}:=\mathrm{f}(\mathrm{x})$;
unction $f(z$: int): int is begin if $z=1$ return
else if even (z) return $f(z / 2)$;
else return $f(3 * z+1)$;
end
$\mathbf{y}=\mathbf{1}\}$

Termination

- It is relatively rare for termination to be the central issue or problem with a program
- Also, demonstrating non-termination is equally important for classes of programs, such as operating systems, avionics control systems, etc.

Proving loops correct

- $\{\mathbf{P}\}$ while C do $S\{\mathbf{Q}\}$
- We need to find a loop invariant \mathbf{I} and prove the following proof obligations

$-\mathbf{P}$ implies I	// I true when the loop starts
$-\{\mathbf{I}$ and $\mathbf{C}\} S\{\mathbf{I}\}$	// I remains true each iteration
$-(\mathbf{I}$ and not $\mathbf{C})$ implies \mathbf{Q} // if loop terminates, Q holds	

Simple example (Ghezzi)

- $\{\mathbf{x}>=\mathbf{0}\}$ while $\mathrm{x}>0$ do $\mathrm{x}:=\mathrm{x}+1\{\mathbf{x}=\mathbf{0}\}$
- $\mathbf{I}=(\mathbf{x}>=\mathbf{0})$
- P implies I [trivial]
- $\{\mathbf{x}>=0\} \mathrm{x}:=\mathrm{x}+1\{\mathrm{x}>=0\}$ [trivial]
- $((x>=0)$ and $(x<=0))$ implies $(x=0)$ [trivial, QED]
- Question: does this example make sense?

Another example: divide i by j, quotient in div, remainder in t

```
{i>0 and j > 0}
t := i;
div := 0;
while t >= j do
    div := div+1;
    t := t-j;
end
{i=div*j+t and 0<=t < j }
```

In small groups, prove this correct, including explicitly identifying the loop invariant

Termination

- Termination is generally proved by the use of well-founded sets
- A set is well-founded if it is partially ordered and every non-empty subset has a minimal element
- In essence, one wants to show monotonic progress on every iteration towards a fixed bound
- In the previous example, t becomes closer to $j-1$ on every iteration - while $t>=j$ do $t:=t-j ;$ end
- One can ignore the other computations in the loop

Next lecture (1/14)

- Weakest precondition formulation
- Proof of correctness of abstract data types

