
1

1

CSE503: Software Engineering

David Notkin
University of Washington

Department of Computer Science & Engineering
Winter 2002

2

Proving programs correct

• Primary characterization
– Given a specification (in a

formal logic) and
– an implementation (in a

programming language),
– prove that the

implementation satisfies the
specification

• Alternative
characterization
– Given the specification,
– derive (construct) a

program that satisfies the
specification

{ true }
x: int;

read(x);

if (mod(x,2) = 1) then

x := x + 1;

fi

{ even(x) }

3

Key notations for proofs

• The two most common notations are Hoare triples
and Dijkstra weakest preconditions (or predicate
transformers)
– We’ll focus primarily on Hoare triples

• A Hoare triple is a logical predicate: {P} S {Q}

• P and Q are predicates, S is a program

• {P} S {Q} is true when

– if P is true, then after S executes, Q is true

4

Examples
(Note: X, Y are constants)

• True Hoare triples
– { true } y := x*x { y >= 0 }
– { x > 0 } x := x + 1 { x > 1 }
– { x > 1 } x := x + 1 { x > 0 }
– { x = X and y = Y }

t := x; x := y; y := t;
{ x = Y and y = X }

• False Hoare triples
– { true } y := x*x { y < 0 }
– { x = X and y = Y }

t := x; x := y; y := t;
{ x = Y and t = Y }

5

Another example:
true or false?

{ x <> 0 }
if x > 0 then

x := x + 1
else

x := -x
fi
{ x > 0 }

6

Meaning of assignment

• We must precisely define the meaning of the
assignment operator used in the programs

• Back-substitution is the basic approach
• Consider the triple { P? } x := exp { Q(x) }

– P? is an unknown precondition
– Q is the postcondition that may be parameterized in

terms of the program variable x

• For Q(x) to be true requires that P? be equal to
Q(exp) as a precondition



2

7

Examples

• {P? } x := x + 1 { x > 1 }
– Q(x) = x > 1
– So P? = Q(x+1) = x + 1 > 1 = x > 0

• { P? } y := x*x { y >= 0 }
– Q(y) = y >= 0
– So P? = Q(x*x) = x*x >= 0 = true

• This is technically handled by the “proof rule”
– { B[a/X] } X :=a { B }
– Where B[a/X] represents the predicate Bwith all free

occurrences of X replaced by a

8

Meaning of conditionals

• There are also proof rules for
{P} if C then S1 else S2 {Q}

• If we can prove
– {P and C} S1 {Q} and also

– {P and not C} S2 {Q}

• Then we have proven the triple

9

Example

• {x <> 0}
if x > 0 then x := x + 1 else x := -x

{x > 0}
• (P and C) = (x <> 0 and x > 0)

= (x > 0)
• {x > 0} x := x + 1 {x > 0} [trivially true]
• (P and not C) = (x <> 0 and not (x > 0)

= (x <> 0) and (x <= 0)
= (x < 0)

• {x < 0} x := -x {x > 0} [trivially true, QED]
10

Proving programs

• The basic approach to proving a program correct
using Hoare triples is to
– start with the precondition P, the postcondition Q, and

the program S

• S usually consists of a sequence of statements
• One then introduces additional intermediate

assertions between the statements
– {P} S1;S2;S3;S4 {Q}
– {P} S1 {A1} S2 {A2} S3 {A3} S4 {Q}

• Then prove each triple (they are associative).

11

Some additional proof rules

• What is the semantics of the programming
language construct ;
– ({P1}S1{P2} and {P2}S2{P3}) implies
{P1}S1;S2{P3}

• Also, if P0 implies P1 in addition, then we
also can prove {P0}S1;S2{P3}

12

Loops

• Loops are the biggest challenge in proving
correctness, since we can not write simple proof
rules because the number of iterations through a
loop is in general unbounded

• One issue is proving that the loop terminates; this
is usually done separately from the proof about the
program's computation

• We have to introduce an added assertion, called a
loop invariant; it is not generally possible to
compute these, so they have to be chosen carefully
to allow the proof to go through



3

13

Termination

• Weak (or partial) correctness: the proof of {P}S{Q}
assumes that S terminates

• Strong (or total) correctness: Termination of S is proven
• Example: weakly correct but not known to be strongly

correct
{x > 0}

y := f(x);
function f(z : int): int is begin

if z=1 return 1
else if even(z) return f(z/2);
else return f(3*z+1);

end

{y = 1}
14

Termination

• It is relatively rare for termination to be the
central issue or problem with a program

• Also, demonstrating non-termination is
equally important for classes of programs,
such as operating systems, avionics control
systems, etc.

15

Proving loops correct

• {P} while C do S {Q}

• We need to find a loop invariant I and prove
the following proof obligations
– P implies I // I true when the loop starts
– {I and C}S{I} // I remains true each iteration

– (I and not C) implies Q // if loop terminates, Q holds

16

Simple example (Ghezzi)

• {x >= 0} while x>0 do x := x + 1 {x = 0}

• I = (x >= 0)

• P implies I [trivial]
• {x >= 0} x := x+1 {x >= 0} [trivial]

• ((x >= 0) and (x <= 0)) implies (x = 0)
[trivial, QED]

• Question: does this example make sense?

17

Another example: divide i by j,
quotient in div, remainder in t

{i > 0 and j > 0}
t := i;
div := 0;
while t >= j do

div := div+1;
t := t-j;

end
{i = div*j+t and 0 <= t < j}

In small groups, prove
this correct, including
explicitly identifying
the loop invariant

18

Termination

• Termination is generally proved by the use of
well-founded sets
– A set is well-founded if it is partially ordered and every

non-empty subset has a minimal element

• In essence, one wants to show monotonic progress
on every iteration towards a fixed bound

• In the previous example, t becomes closer to j-1
on every iteration
– while t >= j do t := t-j; end

• One can ignore the other computations in the loop



4

19

Next lecture (1/14)

• Weakest precondition formulation

• Proof of correctness of abstract data types


