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Today

* Test prioritization (Scout, formerly
Echelon, from MSR)

* Delta debugging (Zeller)
- (for Linux binaries)

Regression testing

» Rerunning test cases which a program has
previously executed correctly in order to detect
errors spawned by changes or corrections made
during software development and maintenance
(FDA part 11 guide: glossary of terms, draft)

* “First, do no harm.”

* Needed in part due to “imperfect debugging” —
Ohba and Chou, ICSEI11

Definition

+ Program P’ modified version of Program P
* T is test suite for P

* How to validate P* — specifically, those
features of P’ that are also in P?

* What tests in T should be run on P’?

Classic approach: retest-all

e Run all non-obsolete test cases in T

* Problem: expensive

Other approaches

Analyze P, P’, and T to select a subset of T
— Focus on modified elements of P in P’

* Define heuristics to remove redundant test cases
from T — with respect to a given coverage criterion

Prioritize test cases
— High rate of detecting faults
— Cases that exercise most frequently used features
— Round-robin (or such...)




vBorrowed" with only minor reduction - thank yoi, Anitabh and Jayl
Effectively Prioritizing Tests in
Development Environment

1sSTA 2002

Amitabh Srivastava
Jay Thiagarajan

PPRC, Microsoft Research

Using program changes

* Source code differencing

— S. Elbaum, A. Malishevsky & G. Rothermel “Test case
prioritization: A family of empirical studies”, Feb. 2002

— S. Elbaum, A. Malishevsky & G. Rothermel
“Prioritizing test cases for regression testing” Aug.
2000

— F. Vokolos & P. Frankl, “Pythia: a regression test
selection tool based on text differencing”, May 1997

Using program changes

* Data and control flow analysis
— T. Ball, “On the limit of control flow analysis for
regression test selection” Mar. 1998
— G. Rothermel and M.J. Harrold, “A Safe, Efficient
Regression Test Selection Technique” Apr. 1997
* Code entities
— Y. F. Chen, D.S. Rosenblum and K.P. Vo “TestTube: A
System for Selective Regression Testing” May 1994

Analysis of various techniques

* Source code differencing
« Simple and fast
« Can be built using commonly available tools like “diff”
« Simple renaming of variable will trip off
« Will fail when macro definition changes
« To avoid these pitfalls, static analysis is needed

* Data and control flow analysis
« Flow analysis is difficult in languages like C/C++ with pointers,
casts and aliasing
« Interprocedural data flow techniques are extremely expensive and
difficult to implement in complex environment

Our Solution

* Focus on change from previous version

* Determine change at very fine granularity — basic
block/instruction

* Operates on binary code
* Easier to integrate in production environment
* Scales well to compute results in minutes
+ Simple heuristic algorithm to predict which
part of code is impacted by the change

Test Effectiveness Infrastructure
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Coverage Impact Analysis

* Terminology
: collection of one or more test cases
: old modified and new blocks

» Compute the coverage of traces for the new
build

+ Coverage for old (unchanged and modified) blocks are
same as the coverage for the old build

+ Coverage for new nodes requires more analysis

Coverage Impact Analysis

A Trace may cover a new
block N if it covers at least one

\ / Predecessor block and at least
\. /é'étgee”’mce'jura' one Successor Block

If P or S is a new block, then
its Predecessors or successors

./ /‘ b W . are used (iterative process)

Coverage Impact Analysis

* Limitations - New node may not be executed
* If there is a path from successor to predecessor
« If there are changes in control path due to data changes

Echelon : Test Case Prioritization

* Detects minimal sets of test cases that are likely to cover the

(old changed and new blocks)
« Input is traces (test cases) and a set of impacted blocks
« Uses a greedy iterative algorithm for test selection

Change Analysis
Coverage Impact Analysis|
Test Prioritization




Echelon: Test Selection
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[ Denotes that a trace T covers the impacted block

Echelon: Test Selection Output

Analysis of results

Three measurements of interest
— How many sequences of tests were formed ?
— How effective is the algorithm in practice ?
— How accurate is the algorithm in practice ?

Trace T1

Trace T2

Trace T3

Trace T4

Trace T5

Trace T7

Trace T8

Trace Tm }
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Details of BinaryE
Version 1 Version 2

Date 12/11/2000 01/29/2001
Functions 31,020 31,026
Blocks 668,068 668,274
Arcs 1,097,294 1,097,650
File size 8,880,128 8,880,128
PDB size 22,602,752 22,651,904
Impacted Blocks 0 378 (220 N, 158 OC)
Number of Traces 3128 3128
# Source Lines ~1.8 Million ~1.8 Million

Echelon takes ~210 seconds for this 8MB binary
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Effectiveness of Echelon

+ Important Measure of effectiveness is early
defect detection

* Measured % of defects vs. % of unique
defects in each sequence

+ Unique defects are defects not detected by
the previous sequence

Effectiveness of Echelon

Defects detected in each sequence
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H % Defects detected = % Unique Defects
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Echelon Results: BinaryK

Number of Test Cases per Set Number of Impacted Blocks in Each Set
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Echelon Results: BinaryU
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Summary

+ Binary based test prioritization approach

can effectively prioritize tests in large scale

development environment

+ Simple heuristic with program change in

fine granularity works well in practice

* Currently integrated into Microsoft

Development process

Coverage Impact Analysis

* Echelon provides a number of options

* Control branch prediction

* Indirect calls : if N is target of an indirect call a trace

needs to cover at least one of its successor block

* Future improvements include heuristic branch

prediction
—Branch Prediction for Free [Ball, Larus]

Echelon: Test Selection

* Options

+ Calculations of weights can be extended, e.g. traces with
great historical fault detection can be given additional

weights

* Include time each test takes into calculation

* Print changed (modified or new) source code that may

not be covered by any trace

* Print all source code lines that may not be covered by any

trace

Delta Debugging

Andreas Zeller

Shameless borrowing of material!

See
http://www.st.cs.uni-sb.de/papers/fse2002/ms2003.pdf
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Simplified Input

= Required 12 tests only
= 896 lines — 1line

. _________________________________________| (896 lines) X
2 I S — (448 lines) X
3 I (224 lines) X
4 (112 lines) v/
5 (112 lines) X
6 (56 lines) v/
<SELECT NAME="priority" MULTIPLE SIZE=7>
38

Simplify vs. Isolate

"priority" MULTIPLE_SIZE=7> X | : <SELECT, NAME

riority” MULTIPLE SIZE=7> X

"priority" MULTIPLE_SIZE=7> v + ESELECT_NAME- "px 10r 1 by "_MULTIPLE_SIZE=7> X
"priority" MULTIPLE_SIZE=7
"priority" MULTIPLE_SIZE=7> v 3 riority” MULTIPLE_SIZE=7> v/

"priority"_MULTIPLE_SIZE=7> X
"priority" MULTIPLE_SIZE=7> X
"priority" MULTIPLE_SIZE=7
"priority” MULTIPLE_SIZE=7> ¢/
ME="priority” MULTIPLE_SIZE=7> V' .
"priority" MULTIPLE_SIZE=7> x Isolat|on: 7 steps
"priority". MULTIPLE,_SIZE
"priority"_MULTIPLE_SIZE=T> v
"priority" MULTIPLE_SIZE=T> ¢/
1 <SELECT_NANE="priority" MULTIPLE_SIZE=7> ¢/
15 <SELECT_NANE="priority" MULTIPLE_SIZE=7> v
E="priority” MULTIPLE_SIZE=7 Eb
"priority” MULTIPLE_SIZE<7> x -
" Satmei ooy oz, EMTOr KSELECT>
19 <SELECT_AJE:
20 <SELECT_NANE
21 <SELECT_NAME.
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Simplification: 26 steps »




