CSES03: Software Engineering

David Notkin
University of Washington
Department of Computer Science & Engineering
Spring 2006

Today

* Test prioritization (Scout, formerly
Echelon, from MSR)

* Delta debugging (Zeller)
- (for Linux binaries)

Regression testing

» Rerunning test cases which a program has
previously executed correctly in order to detect
errors spawned by changes or corrections made
during software development and maintenance
(FDA part 11 guide: glossary of terms, draft)

* “First, do no harm.”

* Needed in part due to “imperfect debugging” —
Ohba and Chou, ICSEI11

Definition

+ Program P’ modified version of Program P
* T is test suite for P

* How to validate P* — specifically, those
features of P’ that are also in P?

* What tests in T should be run on P’?

Classic approach: retest-all

e Run all non-obsolete test cases in T

* Problem: expensive

Other approaches

Analyze P, P’, and T to select a subset of T
— Focus on modified elements of P in P’

* Define heuristics to remove redundant test cases
from T — with respect to a given coverage criterion

Prioritize test cases
— High rate of detecting faults
— Cases that exercise most frequently used features
— Round-robin (or such...)

vBorrowed" with only minor reduction - thank yoi, Anitabh and Jayl
Effectively Prioritizing Tests in
Development Environment

1sSTA 2002

Amitabh Srivastava
Jay Thiagarajan

PPRC, Microsoft Research

Using program changes

* Source code differencing

— S. Elbaum, A. Malishevsky & G. Rothermel “Test case
prioritization: A family of empirical studies”, Feb. 2002

— S. Elbaum, A. Malishevsky & G. Rothermel
“Prioritizing test cases for regression testing” Aug.
2000

— F. Vokolos & P. Frankl, “Pythia: a regression test
selection tool based on text differencing”, May 1997

Using program changes

* Data and control flow analysis
— T. Ball, “On the limit of control flow analysis for
regression test selection” Mar. 1998
— G. Rothermel and M.J. Harrold, “A Safe, Efficient
Regression Test Selection Technique” Apr. 1997
* Code entities
— Y. F. Chen, D.S. Rosenblum and K.P. Vo “TestTube: A
System for Selective Regression Testing” May 1994

Analysis of various techniques

* Source code differencing
« Simple and fast
« Can be built using commonly available tools like “diff”
« Simple renaming of variable will trip off
« Will fail when macro definition changes
« To avoid these pitfalls, static analysis is needed

* Data and control flow analysis
« Flow analysis is difficult in languages like C/C++ with pointers,
casts and aliasing
« Interprocedural data flow techniques are extremely expensive and
difficult to implement in complex environment

Our Solution

* Focus on change from previous version

* Determine change at very fine granularity — basic
block/instruction

* Operates on binary code
* Easier to integrate in production environment
* Scales well to compute results in minutes
+ Simple heuristic algorithm to predict which
part of code is impacted by the change

Test Effectiveness Infrastructure

(50

Coverage Tools

Old Build | | New Build
Test Prioritization

ECHELON
Binary Diff

| BMAT/VULCAN I
Coverage Impact
Analysis

Echelon : Test Prioritization
Old Build N}aw Build

f““ Block Change Analysis

-
Magellan P

>| Coverage Impact Analys'\sl

Repository

(*link with symbol server for symbols)

[Test prioritization |

Leverage what has L
already been tested

Block Change Analysis: Binary
Matching

Old Blocks
(changed)

N NG

[oid Buiid]
Y 2
P g

BMAT - Binary Matching [Wang, Pierce and McFarling JILP 2000] "

Change Analysis
Coverage Impact Analysis|
Test Prioritization

Coverage Impact Analysis

* Terminology
: collection of one or more test cases
: old modified and new blocks

» Compute the coverage of traces for the new
build

+ Coverage for old (unchanged and modified) blocks are
same as the coverage for the old build

+ Coverage for new nodes requires more analysis

Coverage Impact Analysis

A Trace may cover a new
block N if it covers at least one

\ / Predecessor block and at least
\. /é'étgee”’mce'jura' one Successor Block

If P or S is a new block, then
its Predecessors or successors

./ /‘ b W . are used (iterative process)

Coverage Impact Analysis

* Limitations - New node may not be executed
* If there is a path from successor to predecessor
« If there are changes in control path due to data changes

Echelon : Test Case Prioritization

* Detects minimal sets of test cases that are likely to cover the

(old changed and new blocks)
« Input is traces (test cases) and a set of impacted blocks
« Uses a greedy iterative algorithm for test selection

Change Analysis
Coverage Impact Analysis|
Test Prioritization

Echelon: Test Selection

I

T1
e —=———N O T2
o e ===n O
R] T3
S I
T O .

[Denotes that a trace T covers the impacted block

Echelon: Test Selection Output

Analysis of results

Three measurements of interest
— How many sequences of tests were formed ?
— How effective is the algorithm in practice ?
— How accurate is the algorithm in practice ?

Trace T1

Trace T2

Trace T3

Trace T4

Trace T5

Trace T7

Trace T8

Trace Tm }

20
Details of BinaryE
Version 1 Version 2

Date 12/11/2000 01/29/2001
Functions 31,020 31,026
Blocks 668,068 668,274
Arcs 1,097,294 1,097,650
File size 8,880,128 8,880,128
PDB size 22,602,752 22,651,904
Impacted Blocks 0 378 (220 N, 158 OC)
Number of Traces 3128 3128
Source Lines ~1.8 Million ~1.8 Million

Echelon takes ~210 seconds for this 8MB binary

Nt of Tes Coesineschost

»
"
@
2
2
@
&
5,
| i
ST g
W ! LI_L
rrmt
.
. p ® P ™ . -
Sef

Humber of m pacted Bocks I each Set

#Impactec Blocks

0 200 00 600 800 1000 1200 1400

Set

2 ImaactedBlocks

[mpastad Blask Coverags and Gumulativs Total Coveraqs =7t Sats

0w,

0%

soo%

s0w%

0w

Ssnverage

203

100

Effectiveness of Echelon

+ Important Measure of effectiveness is early
defect detection

* Measured % of defects vs. % of unique
defects in each sequence

+ Unique defects are defects not detected by
the previous sequence

Effectiveness of Echelon

Defects detected in each sequence

100

5§88

% Defects detected

1 2 3 4

Sequence

H % Defects detected = % Unique Defects

27
Misprediet due e Limitations
aa0%
J00%
a50% |
£ 2000 ——
g
2 250% +——
3 200 +——1
3
| QEy — — —
1oon +——
050% T——|
000
st sa2 sa3 st
set
Blocks predicted hit that were not hit
29

26
Effectiveness of Echelon
Defects detected in each sequence
100
o
£ 80
£
3 60
2 40
8 20
=
0
1 2 3 4
Sequence
28
[iispradict due to conservative approach
saox
se
g S40%
B
13
E
o
¥ _
z
Esoon
e Set1 Set2 Set3 Set4
.

Blocks predicted not hit that were actually hit
(Blocks were target of indirect calls are being predicted as not hit)

Echelon Results: BinaryK

Number of Test Cases per Set Number of Impacted Blocks in Each Set

Test Cases
#impacted Blocks

57 9 n

115 17 19 21 28 25 27

sets

05/0112001

0512312001

1,761

1774

32,012

32,135

47,131

47,323

882,688

894.464

13 5 7 @ 1113 15 17 18 21 23 25 27
Set

o

589 (350 N,
239 0C)

56

56

31

Echelon Results: BinaryU

Number of Test Cases per St

Sets

35 7 e N BTN ABT NN D
sets

Impacted Block Goverage and Cumulative Total Coverago wrt Sets

05/011200

0512312001

1,967

1,970

30916

31,003

46,638

48,775

528,384

528,896

35 7 9 m BTN ART NN B o

sots

270 (190 N,
80 0C)

56

56

32

Summary

+ Binary based test prioritization approach

can effectively prioritize tests in large scale

development environment

+ Simple heuristic with program change in

fine granularity works well in practice

* Currently integrated into Microsoft

Development process

Coverage Impact Analysis

* Echelon provides a number of options

* Control branch prediction

* Indirect calls : if N is target of an indirect call a trace

needs to cover at least one of its successor block

* Future improvements include heuristic branch

prediction
—Branch Prediction for Free [Ball, Larus]

Echelon: Test Selection

* Options

+ Calculations of weights can be extended, e.g. traces with
great historical fault detection can be given additional

weights

* Include time each test takes into calculation

* Print changed (modified or new) source code that may

not be covered by any trace

* Print all source code lines that may not be covered by any

trace

Delta Debugging

Andreas Zeller

Shameless borrowing of material!

See
http://www.st.cs.uni-sb.de/papers/fse2002/ms2003.pdf

Mozilla Crash

<m alig‘l Teft mn

=tops
“op.sys” WILTIPLE S1IE:T>

<umnu 'JALEE."A]I“>A]1<OWIW VALUZ: "Wéndows 3.1%>Htndows 3. 1<owor(VALUB="tndovs 95" >fitndovs 95<OPTION VALUZ:"indovs
98"iindovs 9BOTION VALUR="¥4ndous ME">iindows MECOPTICH VALUE=" 2000"5Hindows 2000<OPTION VALUE="Hindous

ndovs
NT”Mlnﬂo-s)rr<oan VALUE="lac Systen T'lac Systen T<ORTICN VAJJ Mlac Systen 7.5%Mac System 7.5<OPTICN VALUE="Mzc
5y lac Systen 7.6, 1<OFTION VALOB="Mac System B.0"Mac System 6. 0<OPTIN VALUR:"Mac Systen 8.5">Mac Systen
EX 5<owm TR Systen 6.6"¥ac Systen 8.6<OPTION VALUZ-"Mac System 9.x">Kac System 9.xcORTION UALUB:"Mac0S X'>Mac0S
<OPTION VALIR="LAnux">LAmuc<OPTION ALOB="BSOT">3CDT <OPTICH VALUS=" FresBCD"»PresACDOPTION VALIE="NeEBE1KetBsnaaenion
VAL "0pEnBSD" >CpenBSD<OFTION VALUE="ATK >ATXCOPTION VALUE="Ee0S">Be0SOFTICH VALL 1]
ALIE="TRIX"> [RIE<O2TION VALUB="Neutxino"Neutr1nocOBTION VALIB: "Openile" >0penihSs(f

108F/L">08F/ L<OPTION VALUR="501 ar15">olar1s<0BTION VALUE: SunOS'>SunﬂS<}FIQ

<OPTION VALUE="--">--<OPTIS
vm.m “ps'>ps</suxm>

DRI M o BlockerPTION AR sl OTEON VRLIB: "major " >major CRTION
AL B= n0rmaL “s1orial OPTION VALOZ="E4nor>ninorOPTION VALUZ="trivial’strivial«CPTION VALIB:"entancenent 'senhancenent./SELECT
</tr>

</table

Simplified Input

= Required 12 tests only
= 896 lines — 1line

. ___| (896 lines) X
2 I S — (448 lines) X
3 I (224 lines) X
4 (112 lines) v/
5 (112 lines) X
6 (56 lines) v/
<SELECT NAME="priority" MULTIPLE SIZE=7>
38

Simplify vs. Isolate

"priority" MULTIPLE_SIZE=7> X | : <SELECT, NAME

riority” MULTIPLE SIZE=7> X

"priority" MULTIPLE_SIZE=7> v + ESELECT_NAME- "px 10r 1 by "_MULTIPLE_SIZE=7> X
"priority" MULTIPLE_SIZE=7
"priority" MULTIPLE_SIZE=7> v 3 riority” MULTIPLE_SIZE=7> v/

"priority"_MULTIPLE_SIZE=7> X
"priority" MULTIPLE_SIZE=7> X
"priority" MULTIPLE_SIZE=7
"priority” MULTIPLE_SIZE=7> ¢/
ME="priority” MULTIPLE_SIZE=7> V' .
"priority" MULTIPLE_SIZE=7> x Isolat|on: 7 steps
"priority". MULTIPLE,_SIZE
"priority"_MULTIPLE_SIZE=T> v
"priority" MULTIPLE_SIZE=T> ¢/
1 <SELECT_NANE="priority" MULTIPLE_SIZE=7> ¢/
15 <SELECT_NANE="priority" MULTIPLE_SIZE=7> v
E="priority” MULTIPLE_SIZE=7 Eb
"priority” MULTIPLE_SIZE<7> x -
" Satmei ooy oz, EMTOr KSELECT>
19 <SELECT_AJE:
20 <SELECT_NANE
21 <SELECT_NAME.

5
B
g
a
o
H

%

Simplification: 26 steps »

