
1

1

CSE503: Software Engineering

David Notkin
University of Washington

Department of Computer Science & Engineering
Spring 2006

2

Today

• Test prioritization (Scout, formerly
Echelon, from MSR)

• Delta debugging (Zeller)
– www.askigor.org (for Linux binaries)

3

Regression testing

• Rerunning test cases which a program has
previously executed correctly in order to detect
errors spawned by changes or corrections made
during software development and maintenance
(FDA part 11 guide: glossary of terms, draft)

• “First, do no harm.”
• Needed in part due to “imperfect debugging” –

Ohba and Chou, ICSE11

4

Definition

• Program P’ modified version of Program P
• T is test suite for P
• How to validate P’ – specifically, those

features of P’ that are also in P?
• What tests in T should be run on P’?

5

Classic approach: retest-all

• Run all non-obsolete test cases in T
• Problem: expensive

6

Other approaches

• Analyze P, P’, and T to select a subset of T
– Focus on modified elements of P in P’

• Define heuristics to remove redundant test cases
from T – with respect to a given coverage criterion

• Prioritize test cases
– High rate of detecting faults
– Cases that exercise most frequently used features
– Round-robin (or such…)

2

7

Effectively Prioritizing Tests in
Development Environment

Amitabh Srivastava
Jay Thiagarajan

PPRC, Microsoft Research

8

Using program changes

• Source code differencing
– S. Elbaum, A. Malishevsky & G. Rothermel “Test case

prioritization: A family of empirical studies”, Feb. 2002
– S. Elbaum, A. Malishevsky & G. Rothermel

“Prioritizing test cases for regression testing” Aug.
2000

– F. Vokolos & P. Frankl, “Pythia: a regression test
selection tool based on text differencing”, May 1997

9

Using program changes

• Data and control flow analysis
– T. Ball, “On the limit of control flow analysis for

regression test selection” Mar. 1998
– G. Rothermel and M.J. Harrold, “A Safe, Efficient

Regression Test Selection Technique” Apr. 1997
• Code entities

– Y. F. Chen, D.S. Rosenblum and K.P. Vo “TestTube: A
System for Selective Regression Testing” May 1994

10

Analysis of various techniques
• Source code differencing

• Simple and fast
• Can be built using commonly available tools like “diff”
• Simple renaming of variable will trip off
• Will fail when macro definition changes
• To avoid these pitfalls, static analysis is needed

• Data and control flow analysis
• Flow analysis is difficult in languages like C/C++ with pointers,

casts and aliasing
• Interprocedural data flow techniques are extremely expensive and

difficult to implement in complex environment

11

Our Solution

• Focus on change from previous version
• Determine change at very fine granularity – basic

block/instruction

• Operates on binary code
• Easier to integrate in production environment
• Scales well to compute results in minutes

• Simple heuristic algorithm to predict which
part of code is impacted by the change

12

Test Effectiveness Infrastructure

…

Coverage Impact
Analysis

TEST

Old Build New Build

Binary Diff

Repository
Coverage

Magellan

Test Prioritization

ECHELON

BMAT/VULCAN

Coverage Tools

3

13

Echelon : Test Prioritization

Leverage what has
already been tested Prioritized list of test cases

Test Prioritization

Coverage for new build

Coverage Impact Analysis

New Build

Block Change Analysis

Old Build

Binary Differences

Magellan
Repository

(*link with symbol server for symbols)

14

Block Change Analysis: Binary
Matching

Old Build New Build

New Blocks

Old Blocks
(not changed)

Old Blocks
(changed)

BMAT – Binary Matching [Wang, Pierce and McFarling JILP 2000]

15

Coverage Impact Analysis

• Terminology
• Trace: collection of one or more test cases
• Impacted Blocks: old modified and new blocks

• Compute the coverage of traces for the new
build

• Coverage for old (unchanged and modified) blocks are
same as the coverage for the old build

• Coverage for new nodes requires more analysis

Prioritized list of test cases

Test Prioritization

Coverage for new build

Coverage Impact Analysis

New Build

Change Analysis

Old Build

Binary Differences

16

Coverage Impact Analysis
Predecessor Blocks (P)

Successor Blocks (S)

New Block (N)

• A Trace may cover a new
block N if it covers at least one
Predecessor block and at least
one Successor Block

• If P or S is a new block, then
its Predecessors or successors
are used (iterative process)

Interprocedural
edge

17

Coverage Impact Analysis
• Limitations - New node may not be executed

• If there is a path from successor to predecessor
• If there are changes in control path due to data changes

18

Echelon : Test Case Prioritization
• Detects minimal sets of test cases that are likely to cover the

impacted blocks (old changed and new blocks)
• Input is traces (test cases) and a set of impacted blocks
• Uses a greedy iterative algorithm for test selection

Prioritized list of test cases

Test Prioritization

Coverage for new build

Coverage Impact Analysis

New Build

Change Analysis

Old Build

Binary Differences

4

19

5

2

4

1

3

T1

T2

T3

T4

T5

Set 1
T1

T2

Set 2
T3
T5

Set 3

T4

4

1

3

0

1

1

Echelon: Test Selection
Impacted Block Map

Denotes that a trace T covers the impacted block

Weights

2

0

0

0

20

Echelon: Test Selection Output
Ordered List of Traces

Trace T1

Trace T2

Trace T3

Trace T4

Trace T5

Trace T7

Trace T8

SET1

SET2

SET3

Trace Tm SETn

Each set contains test
cases that will give
maximum coverage of
Impacted nodes

Gracefully handles the
“main” modification case

If all the test can be run,
tests should be run in this
order to maximize the
chances of detecting
failures early

.

..

.

..

21

Analysis of results

Three measurements of interest
– How many sequences of tests were formed ?
– How effective is the algorithm in practice ?
– How accurate is the algorithm in practice ?

22

Details of BinaryE

~1.8 Million~1.8 Million# Source Lines

378 (220 N, 158 OC)0Impacted Blocks

31283128Number of Traces

22,651,90422,602,752PDB size
8,880,1288,880,128File size
1,097,6501,097,294Arcs

668,274668,068Blocks
31,02631,020Functions

01/29/200112/11/2000Date

Version 2Version 1

Echelon takes ~210 seconds for this 8MB binary

23 24

5

25 26

Effectiveness of Echelon

• Important Measure of effectiveness is early
defect detection

• Measured % of defects vs. % of unique
defects in each sequence

• Unique defects are defects not detected by
the previous sequence

27

Effectiveness of Echelon

0

20

40

60

80

100

%
 D

e
fe

ct
s

d
e
te

ct
e
d

1 2 3 4

Sequence

Defects detected in each sequence

% Defects detected % Unique Defects

28

Effectiveness of Echelon

0

20

40

60

80

100

%
D

e
fe

ct
s

d
e
te

ct
e
d

1 2 3 4

Sequence

Defects detected in each sequence

% Defects % Unique defects

29
Blocks predicted hit that were not hit

30

Blocks predicted not hit that were actually hit
(Blocks were target of indirect calls are being predicted as not hit)

6

31

Echelon Results: BinaryK

589 (350 N,
239 OC)

0Impacted
Blocks

5656Traces

894,464882,688File size

47,32347,131Arcs

32,13532,012Blocks

1,7741,761Functions

05/23/200105/01/2001Date

Build 2480Build 2470

32

Echelon Results: BinaryU

Impacted Block Coverage and Cumulative Total Coverage wrt Sets

0%

10%

20%

30%

40%

50%

60%

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

Sets

C
o

v
e

ra
g

e

Impacted

Cumulative

270 (190 N,
80 OC)

0Impacted
Blocks

5656Traces

528,896528,384File size

46,77546,638Arcs

31,00330,916Blocks

1,9701,967Functions

05/23/200105/01/200
1

Date

Build 2480Build
2470

33

Summary

• Binary based test prioritization approach
can effectively prioritize tests in large scale
development environment

• Simple heuristic with program change in
fine granularity works well in practice

• Currently integrated into Microsoft
Development process

34

Coverage Impact Analysis
• Echelon provides a number of options

• Control branch prediction
• Indirect calls : if N is target of an indirect call a trace

needs to cover at least one of its successor block

• Future improvements include heuristic branch
prediction
–Branch Prediction for Free [Ball, Larus]

35

Echelon: Test Selection
• Options

• Calculations of weights can be extended, e.g. traces with
great historical fault detection can be given additional
weights

• Include time each test takes into calculation
• Print changed (modified or new) source code that may

not be covered by any trace
• Print all source code lines that may not be covered by any

trace

36

Delta Debugging

Andreas Zeller

Shameless borrowing of material!
See

http://www.st.cs.uni-sb.de/papers/fse2002/ms2003.pdf

7

37

Mozilla Crash

What is
relevant
here?

38

Simplified Input

 Required 12 tests only
 896 lines → 1line

<SELECT NAME="priority" MULTIPLE SIZE=7>

39

Simplify vs. Isolate

Simplification: 26 steps

Isolation: 7 steps

Error: <SELECT>

