
5/6/2011 

1 

CSE503: 

SOFTWARE ENGINEERING 
SOFTWARE ARCHITECTURE 

David Notkin 

Spring 2011 

Software architecture 

 Software architecture: design-based 

 Formal reasoning about properties 

 Static vs. dynamic architectures 

 Software architecture: property-based 

 Autonomic systems 

 Relationship to model-based design 

503 11sp © UW CSE  • D. Notkin 

2 

Two categories: very soft distinction 

 Software architecture: design-oriented 

 Based in software design, in defining taxonomies based 

on experience, etc. 

 Software architecture: property-oriented 

 Based on a desire to design software systems with a 

particular property – such as autonomic systems, fault-

tolerance, privacy, etc. 

503 11sp © UW CSE  • D. Notkin 

3 

Design-based software architecture 

 Two primary goals 

 Capturing, cataloguing and exploiting experience in 
software designs 

 Allowing reasoning about classes of designs 

 Composition of components and connectors 

 Components are the core computational entities 

 Connectors are the core ways in which components 
communicate and interact 

 Under constraints – only some combinations are permitted, 
which is intended to allow demonstration of the presence or 
absence of key properties 

 
503 11sp © UW CSE  • D. Notkin 

4 



5/6/2011 

2 

Describing architectures 

 There are, roughly, two approaches to describing 

software architectures 

 The first – and the most heavily explored – is to 

define an ADL – architecture description language 

 The second is to extend a programming language 

with architectural constructs 

503 11sp © UW CSE  • D. Notkin 

5 

Partial Comparison 

ADL 

√ Can focus on architectural issues 

√ Can allow architecture-related 

analysis 

√ Separates architectural activities 

from lower-level activities 

X Separates architecture from 

software, allowing drift 

X Requires additional learning and 

experience by developers, 

testers, etc. 

Extend PL 

√ Provides transition to adopt 

architecture for existing systems 

√ Connects architecture with 

program, reducing drift 

√ Incremental cost to train 

developers, testers, etc. 

X Fuzzier distinction between 

architecture and program 

X May constrain possible analyses 

First generation ADLs 

 ACME (CMU/USC) 

 Rapide (Stanford) 

 Wright (CMU) 

 Unicon (CMU) 

 Aesop (CMU) 

 MetaH (Honeywell) 

 C2 SADL (UCI) 

 SADL (SRI) 

 Lileanna 

 UML 

 Modechart 

 From 1999 MCC report  

 Much of the following 
material is adapted from that 
report 

Second generation ADLs 

 Changes from MCC list with respect to Wikipedia‘s 

list (1/9/2010) 

 Added 

 LePUS3 and Class-Z (University of Essex) 

 ABACUS (UTS)  

 AADL (SAE) - Architecture Analysis & Design Language 

 Removed:  

 UML 

 Modechart 

 
503 11sp © UW CSE  • D. Notkin 

8 

http://www.opengroup.org/architecture/togaf/bbs/9910wash/adl_over.pdf


5/6/2011 

3 

ADL +/-‘s 

Positives 

 Formal representation of 

architecture 

 Higher level system description 

than previously possible 

 Permit analysis of architectures – 

completeness, consistency, 

ambiguity, and performance 

 Can support automatic 

generation of software systems 

Negatives 

 No universal agreement on what 

ADLs should represent, 

particularly as regards the 

behavior of the architecture 

 Tend to be very vertically 

optimized toward a  particular 

kind of analysis 

 

Architecture definition 

 Components 

 Connectors 

 Configurations (topologies) 

 Constraints (restrictions) 

503 11sp © UW CSE  • D. Notkin 

10 

MCC 1999 Report: ACME 

 Developed jointly by Monroe, Garlan (CMU), Wile 

(ISI/USC) 

 A general purpose ADL originally designed to be a 

lowest common denominator interchange language 

 Simple, consistent with interchange objective, 

allowing only syntactic linguistic analysis 

503 11sp © UW CSE  • D. Notkin 

11 

MCC report 1999 

simple ACME example (client-server) 

System simple_cs = { 
   Component client = {Port send-req} 
   Component server = {Port receive-req} 
   Connector rpc = {Roles {caller, callee}} 
   Attachments : 
     {client.send-req to rpc.caller; 
      server.receive-req to rpc.callee} 
} 

503 11sp © UW CSE  • D. Notkin 

12 

  receive-req 

client 

   send-req    caller    callee 

server 

Very much in the flavor of module interconnection languages 



5/6/2011 

4 

1999 MCC: Rapide 

 By Luckham at Stanford 

 A general purpose ADL designed with an emphasis on 
simulation yielding partially ordered sets of events 

 Fairly sophisticated, including data types and 
operations 

 Analysis tools focus on posets 

 matching simulation results against patterns of 
allowed/prohibited behaviors 

 some support for timing analysis 

 focus on causality 

503 11sp © UW CSE  • D. Notkin 

13 

Rapide 

 Components 

 Interface objects 

 Architecture that implements an interface 

 Module that implements an interface 

 Connections 

 Connects ―sending interfaces‖ to ―receiving interfaces‖ 

 Components communicate through connections by calling 

actions or functions in its own interface 

 Events generated by components trigger event pattern 

connections between their interfaces – basic, pipe, agent 

503 11sp © UW CSE  • D. Notkin 

14 

Rapide constraints 

 Pattern 

 Bound execution in terms of event patterns 

 Appear in an interface and/or architecture definition 

 [label] filter_part constraint_body 

 Filter creates context 

 Constraint body constrains computation in context 

 Sequential 

 Bound execution in terms of boolean expressions 

 Normally appear in module level behavior 

 Applied to parameters, types, objects and statements 

503 11sp © UW CSE  • D. Notkin 

15 

Rapide example 

type Producer (Max : Positive) is interface 
   action out Send (N: Integer); 
   action in Reply(N : Integer); 
behavior 
   Start => send(0); 
   (?X in Integer) Reply(?X) where ?X<Max => Send(?X+1); 
end Producer; 
type Consumer is interface 
    action in Receive(N: Integer); 
    action out Ack(N : Integer); 
behavior 
    (?X in Integer) Receive(?X) => Ack(?X); 
end Consumer 
architecture ProdCon() return SomeType is 
     Prod : Producer(100); Cons : Consumer; 
connect 
    (?n in Integer) Prod.Send(?n) => Cons.Receive(?n); 
    Cons.Ack(?n) => Prod.Reply(?n); 
end architecture ProdCon; 

503 11sp © UW CSE  • D. Notkin 

16 



5/6/2011 

5 

Wright: Garlan and Allen (CMU) 

 ADL designed with an emphasis on analysis of 

communication protocols 

 Wright uses a variation of CSP to specify the 

behaviors of components, connectors, and systems 

 CSP: Hoare‘s Communicating Sequential Processes 

 Syntactically similar to ACME 

 Wright analysis focuses on analyzing the CSP 

behavior specifications 

503 11sp © UW CSE  • D. Notkin 

17 

Wright Example 

System simple_cs 
  Component client = 
    port send-request = [behavioral spec] 
    spec = [behavioral spec] 
  Component server = 
    port receive-request= [behavioral spec] 
    spec = [behavioral spec] 
  Connector rpc = 
    role caller = (request!x -> result?x ->caller) ^ STOP 
    role callee = (invoke?x -> return!x -> callee) [] STOP 
    glue = (caller.request?x -> callee.invoke!x 
          -> callee.return?x -> callee.result!x -> glue) [] STOP 
  Instances 
    s : server; c : client; r : rpc 
  Attachments : 
    client.send-request as rpc.caller 
    server.receive-request as rpc.callee 
  end simple_cs. 

503 11sp © UW CSE  • D. Notkin 

18 

MCC ―other‖ ADLs 

 Unicon (Shaw et al. @ CMU) 

 An emphasis on generation of connectors 

 Treatment of connectors as first class objects, which also supports 
generation n Unicon as a language focuses primarily on the basic 

 MetaH (Honeywell) 

 Domain specific ADL aimed at guidance, navigation, and control 
applications with ControlH 

 Sophisticated tool support available 

 C2 SADL (Taylor/Medvidovic @ UCI) 

 Emphasis on dynamism 

 SADL (Moriconi/Riemenschneider @ SRI) 

 Emphasis on refinement mappings 

503 11sp © UW CSE  • D. Notkin 

19 

MCC: UML as an ADL 

 Major positives: lowers entry barrier, enables use of 

mainstream modeling approaches and tools 

 Major negatives 

 Encourages an object connection architecture rather 

than interface connection architecture 

 Weakly integrated models with inadequate semantics 

for automated analysis 

 Connectors are not first class objects 

 Visual notation with ambiguity 

503 11sp © UW CSE  • D. Notkin 

20 



5/6/2011 

6 

CSP (Wikipedia 1/11/10) [for Wright] 

 Communicating Sequential Processes (CSP) is a formal 
language for describing patterns of interaction in 
concurrent systems.  It is a member of the family of 
mathematical theories of concurrency known as process 
algebras, or process calculi. … 

 CSP was first described in a 1978 paper by C. A. R. 
Hoare…  CSP has been practically applied in industry 
as a tool for specifying and verifying the concurrent 
aspects of a variety of different systems, such as the 
T9000 Transputer, as well as a secure ecommerce 
system. … 

503 11sp © UW CSE  • D. Notkin 

21 

CSP vending machine example 

 Three event types 

 Inserting a coin into the machine 

 Inserting a pre-paid card into the machine 

 Extracting a chocolate from the machine 

 Examples 

 (coinSTOP)  

 Person = (coinSTOP)  (cardSTOP)  

 SVM =  (coin(chocSVM)) 

 … 

 
503 11sp © UW CSE  • D. Notkin 

22 

Wright: CSP-based 

 A process is an entity that engages in communication 

events 

 Events may be primitive or they can have associated 

data: e?x and e!x represent input and output of 

data, respectively 

 The simplest process STOP engages in no events 

 The ―success‖ event is √ 

 A process that engages in event e and then 

becomes P is denoted e  P 

503 11sp © UW CSE  • D. Notkin 

23 

Wright: CSP-based 

 A process that can behave like P or Q, where the 
choice is made by the environment, is P  Q  

 A process that can behave like P or Q, where the 
choice is made non-deterministically by the process 
itself, is P ∏ Q 

 P1 ║ P2 is a process whose behavior is permitted 
by both P1 and P2 and for events that both 
processes accept 

 A successfully terminating process is §, which is the 
same as √  STOP 

503 11sp © UW CSE  • D. Notkin 

24 



5/6/2011 

7 

Wright example 

 A shared memory connector, with different forms of initialization 

 Any of the roles can either get or set the value repeatedly, terminating at 
any time. The overall communication is complete only when all participants 
are done with the data 

 This version includes no initialization 

 
Style SharedData 
Connector SharedData1 
  Role User1 = set  User1 ∏ get  User1 ∏ § 
  Role User2 = set  User2 ∏ get  User2 ∏ § 
 
  Glue = User1.set  Glue  User2.set  Glue 
        User1.get  Glue  User2.get  Glue  § 

End Style 

503 11sp © UW CSE  • D. Notkin 

25 

With initialization 

 This definition indicates that there is a distinguished role, Initializer, that must 
supply the initial value.  

 The Initializer agrees to set the value before getting it 

 The glue ensures that this will occur before the other participant (User) gets or a sets a 
variable 

 

connector Shared Data2 = 

  role Initializer = 

    let A = set A ∏ get  A ∏ §  
   in set  A 

  role User = set  User ∏ get  User ∏ §  

  glue = let Continue = Initializer.set  Continue 
                      User.set  Continue 
                     Initializer.get  Continue 
                      User.get  Continue  §  
                in Initializer.set  Continue   § 

503 11sp © UW CSE  • D. Notkin 

26 

With lazy initialization 

 Does not require that the other participant wait for 
initialization to proceed 

 
connector Shared Data3 = 

  role Initializer = 

    let A = set  A ∏ get  A ∏ §  
   in set  A 

  role User = set  User ∏ get  User ∏ §  

  glue = let Continue = Initializer.set  Continue 
                      User.set  Continue 
                     Initializer.get  Continue 
                      User.get  Continue  §  
                in Initializer.set  Continue  
           User.set  Continue  § 

 

503 11sp © UW CSE  • D. Notkin 

27 

Looks good but… 

connector Bogus = 

  role User1 = set  User1 ∏ get  User1 ∏ §  

  role User2 = set  User2 ∏ get  User2 ∏ §  

  glue = let Continue = User1.set  Continue 

                          User2.set  Continue 

                          User1.get  Continue 

                          User2.get  Continue  §  
      in User1.set  Continue   User2.set  Continue  § 

503 11sp © UW CSE  • D. Notkin 

28 



5/6/2011 

8 

Analysis 

 An analysis of a well-formed system should be able to 
show that it is deadlock-free 

 For architectural connectors, the means avoiding the 
situation in which two components can wait in the middle 
of an interaction, each port expecting the other to take 
some action that will never happen 

 A connector process is free from deadlock if whenever 
it cannot make progress, then the last event to have 
taken place must have been √ 

 In other words, the roles and glue work in such a way 
that if the overall connector process stops, it will be in a 
situation that is a success state for all the parties 

503 11sp © UW CSE  • D. Notkin 

29 

Wright tools 

 Allow you to assert deadlock-freedom and to have it automatically 

checked 

 It converts Wright descriptions into FDR, a commercial model-checker 

that offers the choice of verification using CSP Traces Refinement, 

Failures Refinement, and Failures-Divergences Refinement models 

 Asserts might be, for the shared data example: 

 ? DFA [FD=User1 

 ? DFA [FD=User2 

 ? DFA [FD=SharedData1 

 DFA means DeadlockFree Process 

 FD means Failures-Divergences Refinement model 

 Returns true if proven, false with counterexample otherwise 

 
503 11sp © UW CSE  • D. Notkin 

30 

Counterexample example 

 √ DFA [FD=User1 

 √ DFA [FD=User2 

 X DFA [FD=Bogus 
 

 The connector glue requires that User1 or User2 initialize the variable, 

but does not specify which one 

 If either begins with a set, then that event will occur first and all is OK 

 But if  User1 and User2 both attempt to perform an initial get – which is 

entirely legal – then the connector will deadlock 

 The tool identifies a counterexample 

 The Glue process is ready to accept – √,User1.set,User2.set 
while both the User1 and User2 processes will only accept get 

 
503 11sp © UW CSE  • D. Notkin 

31 

503 11sp © UW CSE  • D. Notkin 32 



5/6/2011 

9 

Wright: pipe connector 

503 11sp © UW CSE  • D. Notkin 

33 

With trace specification 

503 11sp © UW CSE  • D. Notkin 

34 

For every trace in which Reader.read-eof occurs, there must also be an occurrence of the 

event Writer.close, and the number of times that Reader.read has occurred equals the 

number of occurrences of Writer.write. That is, before eof is signaled, all data have 

been read, and the pipe is closed. 

ArchJava: PL++ rather than ADL 

 ArchJava: Jonathan Aldrich, UWCMU (much more 
since the material here) 

 Combine architectural description with programming 
language 

 Ensure implementation code obeys architectural constraints. 

 Doesn‘t preclude common programming idioms 

 Allow easier traceability between architecture and 
implementation 

 ArchJava uses a type system to guarantee 
communication integrity between an architecture and its 
implementation 

503 11sp © UW CSE  • D. Notkin 

35 

Communication integrity 

 Each component in the implementation may only communicate directly with the 

components to which it is connected in the architecture [Luckham & Vera] 

 If ―out of band‖ communication can take place, most properties are hard to 

guarantee 

 Related to some degree to The Law of Demeter [Lieberherr et al.] 

 A can call B, but A cannot use B to allow A to call C – this would allow A to have 

knowledge of B‘s internal structure – a form of representation exposure 

 B can be modified (if needed) to handle this for A, or A can obtain a direct 

reference to C 

 Wikipedia [1/10/2010]: ―In particular, an object should avoid invoking methods 

of a member object returned by another method. For many modern object 

oriented languages that use a dot as field identifier, the law can be stated 

simply as ‗use only one dot‘. That is, the code ‗a.b.Method()‘ breaks the law 

where ‗a.Method()‘ does not.‖ 

503 11sp © UW CSE  • D. Notkin 

36 

http://archjava.fluid.cs.cmu.edu/


5/6/2011 

10 

Component example 

public component class Parser { 

  public port in { 

    provides void setInfo(Token symbol, SymTabEntry e); 

    requires Token nextToken() throws ScanException; 

  } 

  public port out { 

    provides SymTabEntry getInfo(Token t); 

    requires void compile(AST ast); 

  } 

  public void parse() { 

    Token tok = in.nextToken(); 

    AST ast = parseFile(tok); 

    out.compile(ast); 

  } 

  AST parseFile(Token lookahead) { ... } 

  void setInfo(Token t, SymTabEntry e) {...} 

  SymTabEntry getInfo(Token t) { ... } 

  ... 

} 

503 11sp © UW CSE  • D. Notkin 

37 

• A component can only 

communicate with other 

components at its level in the 

architecture through explicitly 

declared ports—regular 

method calls between 

components are not allowed 

• A port represents a logical 

communication channel 

between a component and 

one or more components that 

it is connected to 

Component example 

public component class Compiler { 

  private final Scanner scanner = ...; 

  private final Parser parser = ...; 

  private final CodeGen codegen = ...; 

 

  connect scanner.out, parser.in; 

  connect parser.out, codegen.in; 

 

  public static void main(String args[]) { 

    new Compiler().compile(args); 

  } 

  public void compile(String args[]) { 

  // for each file in args do: 

   ...parser.parse();... 

  } 

} 

38 

compiler 

scanner parser codegen 

503 11sp © UW CSE  • D. Notkin 

Communication integrity 

 Ensures that the implementation does not 

communicate in ways that could violate reasoning 

about control flow in the architecture 

 A component instance A may not call the methods of 

another component instance B unless 

B is A‘s subcomponent, or 

A and B are sibling subcomponents of a common 

component instance that declares a connection or 

connection pattern between them 

503 11sp © UW CSE  • D. Notkin 

39 

How does ArchJava work? 

503 11sp © UW CSE  • D. Notkin 

40 



5/6/2011 

11 

More… 

503 11sp © UW CSE  • D. Notkin 

41 

Data sharing 

 ArchJava extensions to describe 
architectural constraints on data 
sharing (using alias control 
analysis) 

 Can describe data that is 
confined within a component, 
passed linearly from one 
component to another, or shared 
temporarily or persistently 
between components. 

 Careful use of sophisticated 
language/type constructs like 
uniqueness, lending, mutability, 
etc. 

503 11sp © UW CSE  • 

D. Notkin 
42 

Quick recap 

 Architectural description via specially designed 

languages (ADLs) and via programming language 

extensions 

 Reasoning about architectural properties 

 ADLs (like Wright) allow the definition of properties to 

check within the scope of the language and analysis tools 

 PL++ (like ArchJava) define the properties to always be 

checked 

 Other tradeoffs with respect to adoption, to 

implementation issues, etc. 

503 11sp © UW CSE  • D. Notkin 

43 

Static vs. dynamic architectures 

 ACME, WRIGHT, etc. define static architectures – 
essentially, all processes need to be known statically 
(and thus not created during execution of the 
implementation) 

 The need for dynamic architectures – creation and 
management of processes at run-time – has been a hot 
topic for at least a decade (in the software architecture 
research area, that is) 

 Lots of work on this, but I‘ll focus on 

 Peyman Oreizy, Nenad Medvidovic, Richard N. Taylor. 
"Architecture-Based Runtime Software Evolution". 
International Conference on Software Engineering (April 
1998) 

503 11sp © UW CSE  • D. Notkin 

44 



5/6/2011 

12 

ICSE N-10 award paper 

 This paper received the ICSE 2008 Most Influential 

Paper Award, which recognizes the paper with the 

most influence on theory or practice during the 10 

years since its publication 

 The following (partial set of) slides are stolen from 

the retrospective talk at ICSE 2008 by Peyman, 

Neno and Dick (http://www.ics.uci.edu/~peymano/dynamic-arch/) 

503 11sp © UW CSE  • D. Notkin 

45 

503 11sp © UW CSE  • D. Notkin 46 

 

503 11sp © UW CSE  • D. Notkin 

47 

 

503 11sp © UW CSE  • D. Notkin 

48 

http://www.ics.uci.edu/~peymano/dynamic-arch/
http://www.ics.uci.edu/~peymano/dynamic-arch/
http://www.ics.uci.edu/~peymano/dynamic-arch/


5/6/2011 

13 

 

503 11sp © UW CSE  • D. Notkin 

49 

 

503 11sp © UW CSE  • D. Notkin 

50 

 

503 11sp © UW CSE  • D. Notkin 

51 

 

503 11sp © UW CSE  • D. Notkin 

52 



5/6/2011 

14 

503 11sp © UW CSE  • D. Notkin 53 503 11sp © UW CSE  • D. Notkin 54 

503 11sp © UW CSE  • D. Notkin 55 503 11sp © UW CSE  • D. Notkin 56 



5/6/2011 

15 

Checklists: an aside 

 Last night my wife and I attended 

the Town Hall talk by Dr. Atul 

Gawande on his new book, The 

Checklist Manifesto 

 Excerpts from Malcolm Gladwell‘s 

review [amazon.com] 

 ―[H]e is really interested in a 

problem that afflicts virtually every 

aspect of the modern world–and 

that is how professionals deal with 

the increasing complexity of their 

responsibilities. 

 ―… a distinction between errors of 

ignorance (mistakes we make 

because we don‘t know enough), and 

errors of ineptitude (mistakes we 

made because we don‘t make 

proper use of what we know). 

Failure in the modern world…is 

really about the second of these 

errors …‖ 

503 11sp © UW CSE  • 

D. Notkin 
57 

More from Gladwell 

 ―[H]e walks us through a series of 

examples from medicine showing 

how the routine tasks of surgeons 

have now become so incredibly 

complicated that mistakes of one 

kind or another are virtually 

inevitable: it‘s just too easy for an 

otherwise competent doctor to miss a 

step, or forget to ask a key question 

or, in the stress and pressure of the 

moment, to fail to plan properly for 

every eventuality.  

 

 ―Gawande then visits with pilots and 

the people who build skyscrapers 

and comes back with a solution. 

Experts need checklists–literally–

written guides that walk them 

through the key steps in any complex 

procedure. [H]e shows how his 

research team has taken this idea, 

developed a safe surgery checklist, 

and applied it around the world, 

with staggering success.‖ 

503 11sp © UW CSE  • 

D. Notkin 
58 

So, role of checklists in software engineering? 

503 11sp © UW CSE  • D. Notkin 

59 

Software architecture: property-

oriented 

 Based on a desire to design software systems with a 
particular property – such as autonomic systems, fault-
tolerance, privacy, etc. 

 But weren‘t properties checked by ADLs, etc.? 

 Absolutely.  

 The difference in property-oriented (remember, I made 
that term up) is that the properties are described and 
the systems are produced – at least to the first order 

 In contrast to producing an architecture and ensuring it has 
properties 

 Perhaps this is at least as much an issue of generation as 
property-orientation 

503 11sp © UW CSE  • D. Notkin 

60 

http://gawande.com/
http://gawande.com/
http://gawande.com/
http://gawande.com/


5/6/2011 

16 

Model-based 

design 

 [Wikipedia 1/11/10]: ―… is a mathematical 
and visual method of addressing problems 

associated with designing complex control 

systems. … Model-based design is a 
methodology applied in designing embedded 

software.‖ 

 ―The automotive industry has embraced 

model-based approaches mainly for the 

following reasons: (i) These graphical 
functional models visualize both the 

underlying mathematics (i.e. the differential 

equations) and the software that later on 
implements the functions on a specific 

processor. … (ii) The models can be simulated 
… very early in the development process. … 

(iii) The models can be used as a basis for 

automatic code generation. This not only 
saves the efforts for the manual coding of the 

algorithms but also prevents transcription 

errors from the models to the code.‖ 

 Also related to domain specific modeling 

 

503 11sp © UW CSE  • 

D. Notkin 

Niggemann, O. and Stroop, J.  Models for model's sake: why explicit system models are also an end to themselves.  
30th international Conference on Software Engineering (May 2008).  

61 

Principle of Alternatives [via E. Jackson] 

 A high-level specification defines a 

design space 

 The design space is complex, so 

some refinements are dead-ends 

and require backtracking through 

the design space 

 Model-based design (or model 

integrated computing), provides tool 

support to simultaneously explore 

multiple alternatives 

 

503 11sp © UW CSE  • 

D. Notkin 
62 

http://research.microsoft.com/en-us/um/people/ejackson/publications/asm07_pres.pptx 

How to describe the design space? 

 UML, UML variants (e.g., 
Executable UML), etc. 

 MatLab/Simulink 

 Design-time approximations of 
embedded system models 

 Abstract state machines (E. 
Jackson et al.) 

 Security policies as complex 
data + invariants 

 Model transformations for 
semantic anchoring and code 
generation. 

 Many more! 

 

 

63 
Van den Bergh, J. and Coninx, K. 2004.  Model-based design of context-sensitive interactive applications: a discussion of notations. 

In Proc.3rd Annual Conference on Task Models and Diagrams (2004).  

503 11sp © UW CSE  • D. Notkin 

E. Jackson: FORMULA  (sketch!) 

503 11sp © UW CSE  • D. Notkin 

64 

http://research.microsoft.com/en-us/um/people/ejackson/publications/asm07_pres.pptx
http://research.microsoft.com/en-us/um/people/ejackson/publications/asm07_pres.pptx
http://research.microsoft.com/en-us/um/people/ejackson/publications/asm07_pres.pptx
http://research.microsoft.com/en-us/um/people/ejackson/publications/models07_pres.pptx


5/6/2011 

17 

E. Jackson con‘t 

503 11sp © UW CSE  • D. Notkin 

65 

E. Jackson con‘t 

503 11sp © UW CSE  • D. Notkin 

66 

E. Jackson con‘t 

503 11sp © UW CSE  • D. Notkin 

67 

Autonomic computing 

 IBM‘s term for self-managing  and self-adaptive 

software systems 

 Systems get more complex, increasing the difficulty 

and cost of building larger systems in new domains, 

etc. 

 Autonomic computing systems are intended to adapt 

to unpredictable changes in the environment to 

remove the need for explicit adaption from the 

users and developers 

503 11sp © UW CSE  • D. Notkin 

68 



5/6/2011 

18 

Related to architecture how? 

 Dependent on some of the kinds of mechanisms 

used in model based design 

 Dependent on dynamic architectures 

 Disciplined creation and adaptation of architectures 

that exhibit the self-manageability characteristic 

503 11sp © UW CSE  • D. Notkin 

69 

IBM‘s vision 

 Kephart and Chess focused on the increasing  

―nightmare of pervasive computing‖ in which the 

complexity of the interactions leads us to a situation 

where the designers are deeply hampered 

 The essence of autonomic computing is to have the 

systems manage themselves, to deliver better system 

behavior while offloading tedious and error-prone 

system administrative activities from people 

503 11sp © UW CSE  • D. Notkin 

70 

The autonomic nervous system is a regulatory branch of the central nervous 

system that helps people adapt to changes in their environment. It adjusts or modifies 

some functions in response to stress. 

American Heart Association 

IBM: four dimensions 

 Self-Configuration: Automatic configuration of 

components 

 Self-Healing: Automatic discovery and correction of 

faults 

 Self-Optimization: Automatic monitoring and control 

of resources to ensure the optimal functioning with 

respect to the defined requirements 

 Self-Protection: Proactive identification and 

protection from arbitrary attacks 

503 11sp © UW CSE  • D. Notkin 

71 

IBM Autonomic Systems: 

8 defining characteristics 

 An autonomic computing system needs to "know itself" - its components must also 

possess a system identity. Since a "system" can exist at many levels, an autonomic 

system will need detailed knowledge of its components, current status, ultimate 

capacity, and all connections to other systems to govern itself. … 

 An autonomic computing system must configure and reconfigure itself under varying 

(and in the future, even unpredictable) conditions. System configuration or "setup" 

must occur automatically, as well as dynamic adjustments to that configuration to 

best handle changing environments. 

 An autonomic computing system never settles for the status quo - it always looks for 

ways to optimize its workings. It will monitor its constituent parts and fine-tune 

workflow to achieve predetermined system goals. 

503 11sp © UW CSE  • D. Notkin 

72 

http://www.research.ibm.com/autonomic


5/6/2011 

19 

 An autonomic computing system must perform something akin to healing - it must be 

able to recover from routine and extraordinary events that might cause some of its 

parts to malfunction. It must be able to discover problems or potential problems, 

then find an alternate way of using resources or reconfiguring the system to keep 

functioning smoothly. 

 A virtual world is no less dangerous than the physical one, so an autonomic 

computing system must be an expert in self-protection. It must detect, identify and 

protect itself against various types of attacks to maintain overall system security 

and integrity. 

 An autonomic computing system must know its environment and the context 

surrounding its activity, and act accordingly. It will find and generate rules for how 

best to interact with neighboring systems. It will tap available resources, even 

negotiate the use by other systems of its underutilized elements, changing both itself 

and its environment in the process -- in a word, adapting. 

503 11sp © UW CSE  • D. Notkin 

73 

 An autonomic computing system cannot exist in a hermetic environment. While 

independent in its ability to manage itself, it must function in a heterogeneous world 

and implement open standards -- in other words, an autonomic computing system 

cannot, by definition, be a proprietary solution. 

 An autonomic computing system will anticipate the optimized resources needed 

while keeping its complexity hidden. It must marshal I/T resources to shrink the gap 

between the business or personal goals of the user, and the I/T implementation 

necessary to achieve those goals -- without involving the user in that implementation. 

503 11sp © UW CSE  • D. Notkin 

74 

Great thoughts, but… 

 How to achieve these characteristics? 

 One key mechanism is closed control loops –  from control 
theory 

 That is, the system needs to be able to monitor itself and to 
adapt itself – without diverging into unexpected and 
unacceptable behaviors 

 This requires explicit representations of many aspects of the 
system, so they can be accessed and modified at run-time 
 

 At some level connected to mechanisms such as run-time 
code-generation, reflection, the meta-object protocol, open 
implementations, etc. 

 

 
503 11sp © UW CSE  • D. Notkin 

75 

Key mechanism 

 Closed control loops – control theory 

 That is, the system needs to be able to monitor itself 
and to adapt itself – without diverging into unexpected 
and unacceptable behaviors 

 This requires explicit representations of many aspects of 
the system, so they can be accessed and modified at 
run-time 
 

 At some level connected to mechanisms such as run-time 
code-generation, reflection, the meta-object protocol, 
open implementations, etc. 

503 11sp © UW CSE  • D. Notkin 

76 



5/6/2011 

20 

Cheng et al. 2009: Roadmap 

 

503 11sp © UW CSE  • D. Notkin 

77 

Alternative mechanisms 

 Biologically-inspired… stay tuned 

503 11sp © UW CSE  • D. Notkin 

78 

Suggestions for third topic… 

 …after architecture and tools? 

503 11sp © UW CSE  • D. Notkin 

79 

Questions? 

 

503 11sp © UW CSE  • D. Notkin 

80 


