
4/8/2011

1

CSE503:

SOFTWARE ENGINEERING
ELECTRIFYING SPECIFICATIONS

David Notkin

Spring 2011

Formal methods

503 11sp © UW CSE • D. Notkin

2

 We’ve covered some of the basics, although there is

much more out there – we’ll get to some of that

 One thing is clear so far: programs execute – they

are kinetic – while formalisms just sit there – they

represent potential

 This property makes many formalisms less attractive

to many people, as the benefits are harder to see

“It is easier to change the specification to fit the

program than vice versa.” –Perlis

Electrifying formalisms

503 11sp © UW CSE • D. Notkin

3

 Daniel Jackson (and others) have worked on

addressing this concern by “electrifying” formalisms

– that is, making them “executable” in some sense,

or at least providing useful feedback to a

developer quickly

 Alloy is Jackson’s core approach to this, but it’s not

the only one out there

Executable specifications

503 11sp © UW CSE • D. Notkin

4

 One way to electrify a formalism is to execute it – many formalisms
represent high-level programs

 Google Scholar found ~95K entries to “executable specifications”

 Many such executable specifications look a lot like (various kinds of)
logic programs or functional programs; much of this work is related to
automatic programming

 The execution gives insight into what the specification means

 Performance of these “programs” is usually poor

 And automated refinement techniques to evolve from an executable
specification to an efficient program seem to be limited

 This work goes back to at least 1976 with Darlington, Burstall, Manna
and others

4/8/2011

2

Type checking

503 11sp © UW CSE • D. Notkin

5

 Type checking is a good example of an electrified
formalism – based on the type system and proof
rules, the compiler reports immediately on situations
where the program may be misusing typed values

 This is also a good example of an alternative style
of electrification

 Rather than executing to “see what it does,” it
rather compares two different views of the
computation – what the types constrain and whether
the program satisfies those constraints

Comparing

503 11sp © UW CSE • D. Notkin

6

 I believe that this comparative approach is
extremely powerful – more powerful than the “let’s
make higher-level specifications that we can
execute” in the long-run

 In some sense, that was the idea of proving
desirable properties from axioms – the axioms
described relationships of an ADT, and the posited
properties were alternative views of what should be
true for that ADT

 But this wasn’t electrified in any sense

Model checking

503 11sp © UW CSE • D. Notkin

7

 Model checking is one of the bases for electrifying

comparisons of program views

 We’ll look at this first from the high-level notion of

model checking, then look at Alloy as an instance of

electrified (bounded) model checking, and then look

back at more conventional model checking

Model checking

503 11sp © UW CSE • D. Notkin

8

Finite State Machine

Temporal Logic Formula

Satisfy?

YES

NO

• What can the finite state machines and temporal logic formulae represent?

• What does “satisfy” mean? How does “satisfy” work?

• Why should we care?

• What is a counterexample?

• What does “Yes” actually mean?

Counter-

example

4/8/2011

3

ACM 2007 Turing Award Citation

In 1981, Edmund M. Clarke and E. Allen Emerson, working in the USA, and Joseph

Sifakis working independently in France, authored seminal papers that founded

what has become the highly successful field of Model Checking. This verification

technology provides an algorithmic means of determining whether an abstract

model--representing, for example, a hardware or software design--satisfies a

formal specification expressed as a temporal logic formula. Moreover, if the

property does not hold, the method identifies a counterexample execution that

shows the source of the problem. The progression of Model Checking to the point

where it can be successfully used for complex systems has required the

development of sophisticated means of coping with what is known as the state

explosion problem. Great strides have been made on this problem over the past

27 years by what is now a very large international research community. As a result

many major hardware and software companies are now using Model Checking in

practice. Examples of its use include the verification of VLSI circuits, communication

protocols, software device drivers, real-time embedded systems, and security

algorithms. …

9

503 11sp © UW CSE • D. Notkin

10

A computation tree over an FSM

 Represent all possible FSM paths with a

computation tree – even when infinite, the

structure is constrained because of finite states

• The computation tree is generated from the

state machine

• The temporal logic formula queries the

computation tree

S0

S1

S0

…

S1

…

S0

S0

…

S1

…

S0

1

S1
0

1

0

 Model checking answers questions about this tree

structure – kinds of queries include

 Does every accepting input include a 0? A 1?

 Does any accepting input include a 0? A 1?

 Does every accepting input that has a 1 have a

1 in the remaining input?

 More generally, safety and liveness

properties of many kinds

503 11sp © UW CSE • D. Notkin

FAQ

503 11sp © UW CSE • D. Notkin

11

• What can the finite state machines and temporal logic formulae
represent?
• See the Turing Award citation (and more…)

• What does “satisfy” mean? How does “satisfy” work?
• Satisfy means that the temporal logic formula is guaranteed to hold over the

computation tree defined by the FSM

• Why should we care?
• Guarantees can be a good thing

• What is a counterexample?
• A path through the computation tree that contradicts the temporal logic formula

• There is a mismatch between the two descriptions – but one cannot tell which is
“wrong” without further work

• What does “Yes” actually mean?
• It is a guarantee that the property holds, but it provides no guarantee that the

property or the FSM are what the developers thinks they are

Two Approaches to Model Checking

503 11sp © UW CSE • D. Notkin

12

 Explicit – represent all states

 Use conventional state-space search

 Reduce state space by folding equivalent states together

 Symbolic – represent sets of states using boolean formulae

 Reduce huge state spaces by considering large sets of states
simultaneously – to the first order, this is the meeting of BDDs
(binary decision diagrams) and model checking (more later)

 Convert state machines, logic formulae, etc. to boolean
representations

 Perform state space exploration using boolean operators to
perform set operations

 SAT solvers are often at the base of symbolic model checking

4/8/2011

4

Bounded model checking

503 11sp © UW CSE • D. Notkin

13

 Restricting to finite abstractions work in many
situations – protocols, etc.

 But programs themselves are not generally
restricted to finite abstractions – so how could
model checking apply?

 Simply, one can constrain the search space:
exhaustively search within a finite space with the
expectation (hope?) that the finite space is a good
approximation to the infinite space

 D. Jackson calls this the “small scope hypothesis”

Basic claim and idea

503 11sp © UW CSE • D. Notkin

14

 Most counterexamples can be identified with a failing
trace that is short, by some definition

 The number of operations

 The complexity of the input structures (e.g., how many nodes)

 Size of a device

 Length of a pathname

 …

 If no counterexample is returned when checking the
truncated space, one builds confidence in the model but
cannot be certain of the properties

 Eliminating counterexamples likely helps through the
infinite space

A little pre-Alloy history

503 11sp © UW CSE • D. Notkin

15

 Model-based descriptions

 The Z specification language

Model-oriented
16

 Model a system by describing its state together with

operations over that state

 An operation is a function that maps a value of the

state together with values of parameters to the

operation onto a new state value

 A model-oriented language typically describes

mathematical objects (e.g. data structures or

functions) that are structurally similar to the required

computer software

503 11sp © UW CSE • D. Notkin

4/8/2011

5

17

Z (“zed”)

 Perhaps the most widely known and used model-

based specification language

 Good for describing state-based abstract

descriptions roughly in the abstract data type style

 Based on typed set theory and predicate logic

 A few commercial and honorary successes

 I’ll come back to one reengineering story afterwards

503 11sp © UW CSE • D. Notkin

18

Basics

 Static schemas

 States a system can occupy

 Invariants that must be maintained in every system state

 Dynamic schemas

 Operations that are permitted

 Relationship between inputs and outputs of those

operations

 Changes of states

503 11sp © UW CSE • D. Notkin

19

The classic example

 A “birthday book” that tracks people’s birthdays

and can issue reminders of those birthdays

 There are tons of web-based versions of these now

 There are two basic types of atomic elements in this

example

 [NAME,DATE]

 An inherent degree of abstraction: nothing about

formats, possible values, etc.

503 11sp © UW CSE • D. Notkin

Taken directly from Spivey’s ZRM
20

static schema

legal system state

dynamic schema

Proof of expected property

503 11sp © UW CSE • D. Notkin

4/8/2011

6

Some more schemas

503 11sp © UW CSE • D. Notkin

21

schema w/ unchanged inputs

schema w/ unchanged inputs

initializing schema

What about errors?

503 11sp © UW CSE • D. Notkin

22

 Entering a birthday for someone already in the

book?

 Looking up a birthday for an unknown person?

 What is the meaning of the specification in the face

of errors like these – unsatisfied pre-conditions, in

most situations?

 Rewrite the whole specification?

Or use the schema calculus!
23

add an enumerated type

schema

conjoin the schemas

schema

schema calculus

503 11sp © UW CSE • D. Notkin

24

Schema calculus: sweet!

 The schema calculus allows us to combine

specifications using logical operators

(e.g., , , ,)

 This allows us to define the common and error cases

separately, for example, and then just -ing them

together

 In some sense, it allows us to get a cleaner, smaller

specification

503 11sp © UW CSE • D. Notkin

4/8/2011

7

But don’t try this on programs!
25

 Wouldn’t it be fantastic if we had the equivalent of the
schema calculus on programs?

 Write your error cases separately and then just them
together

 Write a text editor and a spell checker and integrate them
by -ing them together

 So you want to build a program that doesn’t blow up a
nuclear power plant?
 Just build one that does, and then negate it !

 Programs are not logic

 Some classes of programming languages – largely logic
and functional languages – come closer than imperative and
OO languages, but they are not logic

503 11sp © UW CSE • D. Notkin

Points about Z

503 11sp © UW CSE • D. Notkin

26

 This isn’t proving correctness between a specification
and a program

 There isn’t a program!

 Even the specification without the implementation has
(some) value

 The most obvious example is when a theorem is posited and
then is proven from the rest of the specification – albeit by
hand

 The actual notation seems more effective that some
others

 Z is intended to be in bite-sized chucks (schema),
interspersed with natural language explanations

27

Z used to improve CICS/ESA_V3.1

 A broadly used IBM transaction processing system

 Integrated into IBM's existing and well-established

development process

 Many measurements of the process indicated that they

were able to reduce their costs for the development by

almost five and a half million dollars

 Early results from customers also indicated significantly

fewer problems, and those that have been detected are

less severe than would be expected otherwise

503 11sp © UW CSE • D. Notkin

Queen’s Award for Technological Achievement

28

 “Her Majesty the Queen has been graciously pleased to
approve the Prime Minister's recommendation that The Queen's
Award for Technological Achievement should be conferred this
year upon Oxford University Computing Laboratory.

 “Oxford University Computing Laboratory gains the Award
jointly with IBM United Kingdom Laboratories Limited for the
development of a programming method based on elementary
set theory and logic known as the Z notation, and its application
in the IBM Customer Information Control System (CICS) product.
…

 “The use of Z reduced development costs significantly and
improved reliability and quality. Precision is achieved by basing
the notation on mathematics, abstraction through data
refinement, re-use through modularity and accuracy through the
techniques of proof and derivation.

 “CICS is used worldwide by banks, insurance companies, finance
houses and airlines etc. who rely on the integrity of the system
for their day-to-day business.”

Sir Charles Antony

Richard Hoare

503 11sp © UW CSE • D. Notkin

http://en.wikipedia.org/wiki/File:CAR_Hoare.jpg

4/8/2011

8

Z to Alloy: an electrifying path…

503 11sp © UW CSE • D. Notkin

29

 At some reasonable level, Alloy is Z with an analysis
engine to checked bounded spaces

 Up to five friends, up to five birthdays, etc.

 Alloy returns either true or else a counterexample within
that bounded state space

 Again, recall the small scope hypothesis – in Alloy’s words,
the analysis is sound and “complete up to scope”

 Alloy has been designed explicitly to support automatic
analysis

 Alloy supports complex data structures, such as trees,
and thus is a rich way to describe state

Underneath: SAT solving

503 11sp © UW CSE • D. Notkin

30

 Since Nitpick, Alloy’s predecessor, Jackson’s analysis

engines have been based on broad set of SAT-solvers

 They have techniques and optimizations for translating

from relational to boolean logic

 They are currently using their own SAT-solver, Kodkod

 first order logic with relations, transitive closure, and partial

models

 analyses for both satisfiable and unsatisfiable problems;

much of this is based on the ability to use partial models

503 11sp © UW CSE • D. Notkin

From Torlak’s kodkod

dissertation – syntax

and semantics of Alloy’s

bounded relational logic

Translating to SAT

503 11sp © UW CSE • D. Notkin

32

 Translation to boolean logic

 Break symmetries, handle sparseness, etc.

 Normalize to CNF

 Mapping back to original model

 Basic notion: a relation over a finite university can

be represented as a matrix of boolean values

 Relational constraints are represented as boolean

constraints over the matrices

4/8/2011

9

Facts vs. assertions

503 11sp © UW CSE • D. Notkin

34

 Alloy facts define truths of the model

 Alloy assertions define truths you’d like check to make

sure that they hold about the model

 Closely related to Jackson père’s discussion of moods

 Indicative mood: describes how things in the world are

regardless of the behavior of the system: “Each seat is

located in one and only one theater.”

 Optative mood: describes what you want the system to

achieve: “Better seats should be allocated before worse

seats at the same price.”

And to designations and definitions
Also Jackson père

503 11sp © UW CSE • D. Notkin

35

 Designations are atomic phenomena

 e.g., genetic mother

 Definitions define terms using designations and
other definitions

 e.g., genetic child of

 Refutable descriptions can in principle be disproven

 m,xMother(m,x)Mother(x,m)

 Can’t do this with definitions

 The precise distinction between these is, to me, far
more important than the formalization

Alloy … a brief demo

503 11sp © UW CSE • D. Notkin

36

