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 We’ve covered some of the basics, although there is 

much more out there – we’ll get to some of that 

 One thing is clear so far: programs execute – they 

are kinetic – while formalisms just sit there – they 

represent potential 

 This property makes many formalisms less attractive 

to many people, as the benefits are harder to see 

“It is easier to change the specification to fit the 

program than vice versa.” –Perlis 

Electrifying formalisms 
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 Daniel Jackson (and others) have worked on 

addressing this concern by “electrifying” formalisms 

– that is, making them “executable” in some sense, 

or at least providing useful feedback to a 

developer quickly 

 Alloy is Jackson’s core approach to this, but it’s not 

the only one out there 

Executable specifications 

503 11sp © UW CSE  • D. Notkin 

4 

 One way to electrify a formalism is to execute it – many formalisms 
represent high-level programs 

 Google Scholar found ~95K entries to “executable specifications” 

 Many such executable specifications look a lot like (various kinds of) 
logic programs or functional programs; much of this work is related to 
automatic programming 

 The execution gives insight into what the specification means 

 Performance of these “programs” is usually poor 

 And automated refinement techniques to evolve from an executable 
specification to an efficient program seem to be limited 

 This work goes back to at least 1976 with Darlington, Burstall, Manna 
and others 
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 Type checking is a good example of an electrified 
formalism – based on the type system and proof 
rules, the compiler reports immediately on situations 
where the program may be misusing typed values 

 This is also a good example of an alternative style 
of electrification 

 Rather than executing to “see what it does,” it 
rather compares two different views of the 
computation – what the types constrain and whether 
the program satisfies those constraints 

Comparing 
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 I believe that this comparative approach is 
extremely powerful – more powerful than the “let’s 
make higher-level specifications that we can 
execute” in the long-run 

 In some sense, that was the idea of proving 
desirable properties from axioms – the axioms 
described relationships of an ADT, and the posited 
properties were alternative views of what should be 
true for that ADT 

 But this wasn’t electrified in any sense 

 

Model checking 
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 Model checking is one of the bases for electrifying 

comparisons of program views 

 We’ll look at this first from the high-level notion of 

model checking, then look at Alloy as an instance of 

electrified (bounded) model checking, and then look 

back at more conventional model checking 

Model checking 
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Finite State Machine 

Temporal Logic Formula 

Satisfy? 

YES 

NO 

• What can the finite state machines and temporal logic formulae represent? 

• What does “satisfy” mean? How does “satisfy” work?  

• Why should we care?  

• What is a counterexample?  

• What does “Yes” actually mean? 

Counter-

example 
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ACM 2007 Turing Award Citation 

In 1981, Edmund M. Clarke and E. Allen Emerson, working in the USA, and Joseph 

Sifakis working independently in France, authored seminal papers that founded 

what has become the highly successful field of Model Checking. This verification 

technology provides an algorithmic means of determining whether an abstract 

model--representing, for example, a hardware or software design--satisfies a 

formal specification expressed as a temporal logic formula. Moreover, if the 

property does not hold, the method identifies a counterexample execution that 

shows the source of the problem. The progression of Model Checking to the point 

where it can be successfully used for complex systems has required the 

development of sophisticated means of coping with what is known as the state 

explosion problem. Great strides have been made on this problem over the past 

27 years by what is now a very large international research community. As a result 

many major hardware and software companies are now using Model Checking in 

practice. Examples of its use include the verification of VLSI circuits, communication 

protocols, software device drivers, real-time embedded systems, and security 

algorithms.  … 
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A computation tree over an FSM 

 Represent all possible FSM paths with a 

computation tree – even when infinite, the 

structure is constrained because of finite states 

• The computation tree is generated from the 

state machine 

• The temporal logic formula queries the 

computation tree 
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 Model checking answers questions about this tree 

structure – kinds of queries include 

 Does every accepting input include a 0? A 1? 

 Does any accepting input include a 0? A 1? 

 Does every accepting input that has a 1 have a 

1 in the remaining input? 

 More generally, safety and liveness 

properties of many kinds 
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• What can the finite state machines and temporal logic formulae 
represent? 
• See the Turing Award citation (and more…) 

• What does “satisfy” mean? How does “satisfy” work?  
• Satisfy means that the temporal logic formula is guaranteed to hold over the 

computation tree defined by the FSM 

• Why should we care? 
• Guarantees can be a good thing 

• What is a counterexample?  
• A path through the computation tree that contradicts the temporal logic formula 

• There is a mismatch between the two descriptions – but one cannot tell which is 
“wrong” without further work 

• What does “Yes” actually mean? 
• It is a guarantee that the property holds, but it provides no guarantee that the 

property or the FSM are what the developers thinks they are 

Two Approaches to Model Checking 
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 Explicit – represent all states 

 Use conventional state-space search 

 Reduce state space by folding equivalent states together 

 Symbolic – represent sets of states using boolean formulae 

 Reduce huge state spaces by considering large sets of states 
simultaneously – to the first order, this is the meeting of BDDs 
(binary decision diagrams) and model checking (more later) 

 Convert state machines, logic formulae, etc. to boolean 
representations 

 Perform state space exploration using boolean operators to 
perform set operations 

 SAT solvers are often at the base of symbolic model checking 
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Bounded model checking 
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 Restricting to finite abstractions work in many 
situations – protocols, etc. 

 But programs themselves are not generally 
restricted to finite abstractions – so how could 
model checking apply? 

 Simply, one can constrain the search space: 
exhaustively search within a finite space with the 
expectation (hope?) that the finite space is a good 
approximation to the infinite space 

 D. Jackson calls this the “small scope hypothesis” 

Basic claim and idea 
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 Most counterexamples can be identified with a failing 
trace that is short, by some definition 

 The number of operations 

 The complexity of the input structures (e.g., how many nodes) 

 Size of a device 

 Length of a pathname 

 … 

 If no counterexample is returned when checking the 
truncated space, one builds confidence in the model but 
cannot be certain of the properties 

 Eliminating counterexamples likely helps through the 
infinite space 

A little pre-Alloy history 
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 Model-based descriptions 

 The Z specification language 

Model-oriented 
16 

 Model a system by describing its state together with 

operations over that state 

 An operation is a function that maps a value of the 

state together with values of parameters to the 

operation onto a new state value 

 A model-oriented language typically describes 

mathematical objects (e.g. data structures or 

functions) that are structurally similar to the required 

computer software 
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Z (“zed”) 

 Perhaps the most widely known and used model-

based specification language 

 Good for describing state-based abstract 

descriptions roughly in the abstract data type style 

 Based on typed set theory and predicate logic 

 A few commercial and honorary successes 

 I’ll come back to one reengineering story afterwards 
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Basics 

 Static schemas 

 States a system can occupy 

 Invariants that must be maintained in every system state 

 Dynamic schemas 

 Operations that are permitted  

 Relationship between inputs and outputs of those 

operations 

 Changes of states 
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The classic example 

 A “birthday book” that tracks people’s birthdays 

and can issue reminders of those birthdays 

 There are tons of web-based versions of these now 

 There are two basic types of atomic elements in this 

example 

 [NAME,DATE] 

 An inherent degree of abstraction: nothing about 

formats, possible values, etc. 
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Taken directly from Spivey’s ZRM 
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static schema 

legal system state 

dynamic schema 

Proof of expected property 
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Some more schemas 
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schema w/ unchanged inputs 

schema w/ unchanged inputs 

initializing schema 

What about errors? 
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 Entering a birthday for someone already in the 

book? 

 Looking up a birthday for an unknown person? 

 What is the meaning of the specification in the face 

of errors like these – unsatisfied pre-conditions, in 

most situations? 

 Rewrite the whole specification? 

Or use the schema calculus! 
23 

add an enumerated type 

schema 

conjoin the schemas 

schema 

schema calculus 

503 11sp © UW CSE  • D. Notkin 

24 

Schema calculus: sweet! 

 The schema calculus allows us to combine 

specifications using logical operators 

(e.g., , , , ) 

 This allows us to define the common and error cases 

separately, for example, and then just -ing them 

together 

 In some sense, it allows us to get a cleaner, smaller 

specification 
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But don’t try this on programs! 
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 Wouldn’t it be fantastic if we had the equivalent of the 
schema calculus on programs? 

 Write your error cases separately and then just  them 
together 

 Write a text editor and a spell checker and integrate them 
by -ing them together 

 So you want to build a program that doesn’t blow up a 
nuclear power plant? 
 Just build one that does, and then negate it !  

 Programs are not logic 

 Some classes of programming languages – largely logic 
and functional languages – come closer than imperative and 
OO languages, but they are not logic 
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 This isn’t proving correctness between a specification 
and a program 

 There isn’t a program! 

 Even the specification without the implementation has 
(some) value 

 The most obvious example is when a theorem is posited and 
then is proven from the rest of the specification – albeit by 
hand 

 The actual notation seems more effective that some 
others 

 Z is intended to be in bite-sized chucks (schema), 
interspersed with natural language explanations 
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Z used to improve CICS/ESA_V3.1 

 A broadly used IBM transaction processing system 

 Integrated into IBM's existing and well-established 

development process 

 Many measurements of the process indicated that they 

were able to reduce their costs for the development by 

almost five and a half million dollars 

 Early results from customers also indicated significantly 

fewer problems, and those that have been detected are 

less severe than would be expected otherwise 
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 “Her Majesty the Queen has been graciously pleased to 
approve the Prime Minister's recommendation that The Queen's 
Award for Technological Achievement should be conferred this 
year upon Oxford University Computing Laboratory.  

 “Oxford University Computing Laboratory gains the Award 
jointly with IBM United Kingdom Laboratories Limited for the 
development of a programming method based on elementary 
set theory and logic known as the Z notation, and its application 
in the IBM Customer Information Control System (CICS) product. 
… 

 “The use of Z reduced development costs significantly and 
improved reliability and quality. Precision is achieved by basing 
the notation on mathematics, abstraction through data 
refinement, re-use through modularity and accuracy through the 
techniques of proof and derivation.  

 “CICS is used worldwide by banks, insurance companies, finance 
houses and airlines etc. who rely on the integrity of the system 
for their day-to-day business.”  

Sir Charles Antony 

Richard Hoare 
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Z to Alloy: an electrifying path… 
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 At some reasonable level, Alloy is Z with an analysis 
engine to checked bounded spaces 

 Up to five friends, up to five birthdays, etc. 

 Alloy returns either true or else a counterexample within 
that bounded state space 

 Again, recall the small scope hypothesis – in Alloy’s words, 
the analysis is sound and “complete up to scope” 

 Alloy has been designed explicitly to support automatic 
analysis  

 Alloy supports complex data structures, such as trees, 
and thus is a rich way to describe state 

Underneath: SAT solving 
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 Since Nitpick, Alloy’s predecessor, Jackson’s analysis 

engines have been based on broad set of SAT-solvers  

 They have techniques and optimizations for translating 

from relational to boolean logic 

 They are currently using their own SAT-solver, Kodkod 

 first order logic with relations, transitive closure, and partial 

models 

 analyses for both satisfiable and unsatisfiable problems; 

much of this is based on the ability to use partial models 
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From Torlak’s kodkod 

dissertation – syntax 

and semantics of Alloy’s 

bounded relational logic 

Translating to SAT 
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 Translation to boolean logic 

 Break symmetries, handle sparseness, etc. 

 Normalize to CNF 

 Mapping back to original model 

 

 Basic notion: a relation over a finite university can 

be represented as a matrix of boolean values 

 Relational constraints are represented as boolean 

constraints over the matrices 
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Facts vs. assertions 
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 Alloy facts define truths of the model 

 Alloy assertions define truths you’d like check to make 

sure that they hold about the model 

 Closely related to Jackson père’s discussion of moods 

 Indicative mood: describes how things in the world are 

regardless of the behavior of the system: “Each seat is 

located in one and only one theater.” 

 Optative mood: describes what you want the system to 

achieve: “Better seats should be allocated before worse 

seats at the same price.” 

 

And to designations and definitions 
Also Jackson père 
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 Designations are atomic phenomena 

 e.g., genetic mother 

 Definitions define terms using designations and 
other definitions 

 e.g., genetic child of 

 Refutable descriptions can in principle be disproven 

 m,xMother(m,x)Mother(x,m) 

 Can’t do this with definitions 

 The precise distinction between these is, to me, far 
more important than the formalization 

Alloy … a brief demo 
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