
4/26/2011

1

CSE503:

SOFTWARE ENGINEERING
DESIGN

David Notkin

Spring 2011

Today

 Very brief project #1 descriptions

 Software design introduction

503 11sp © UW CSE • D. Notkin

2

503 11sp © UW CSE • D. Notkin

3

Functional decomposition

 Divide-and-conquer based on functions

 input; compute; output

 Then proceed to decompose compute

 This is stepwise refinement (Wirth, 1971)

 In essence, refining until implementable directly in a
programming language (or on an architecture)

 There is an enormous body of work in this area,
including many formal calculi to support the approach

 Closely related to proving programs correct

 More effective in the face of stable requirements

503 11sp © UW CSE • D. Notkin

4

Information hiding

 Information hiding is perhaps the most important

intellectual tool developed to support software

design [Parnas 1972]

 Makes the anticipation of change a centerpiece in

decomposition into modules

 Provides the fundamental motivation for abstract

data type (ADT) languages

 And thus a key idea in the OO world, too

 The conceptual basis is key

4/26/2011

2

503 11sp © UW CSE • D. Notkin

5

Basics of information hiding

 Modularize based on anticipated change

 Fundamentally different from Brooks’ approach in

OS/360 (see old and new MMM)

 Separate interfaces from implementations

 Implementations capture decisions likely to change

 Interfaces capture decisions unlikely to change

 Clients know only interface, not implementation

 Implementations know only interface, not clients

 Modules are also work assignments

503 11sp © UW CSE • D. Notkin

6

Anticipated changes

 The most common anticipated change is “change of

representation”

 Anticipating changing the representation of data and

associated functions (or just functions)

 Again, a key notion behind abstract data types

 Ex:

 Cartesian vs. polar coordinates; stacks as linked lists vs.

arrays; packed vs. unpacked strings

Classic Parnas example: KWIC
Key Word in Context

 Example input

One flew over
the cuckoo’s nest
but it wasn’t me

 Example output

but it wasn’t me
cuckoo’s nest the
flew over One
it wasn’t me but
me but it wasn’t
nest the cuckoo’s
One flew over
over One flew
the cuckoo’s nest
wasn’t me but it

503 11sp © UW CSE • D. Notkin

7

Functional decomposition

503 11sp © UW CSE • D. Notkin

8

 A traditional would decompose based on the four basic functions
performed: input, shift, alphabetize, output, coordinated by main

 Data communication is through shared storage and can be an
unconstrained read-write protocol because of main

 Parnas argues some serious drawbacks in terms of its ability to
handle changes

 In particular, a change in data storage format will affect almost all of
the modules.

 Similarly changes in algorithm and enhancements to system function are
not easily handled

 Finally, reuse is not well-supported because each module of the
system is tied tightly to this particular application

 Strengths of this decomposition?

4/26/2011

3

503 11sp © UW CSE • D. Notkin

9

http://www.idt.mdh.se/kurser/cdt413/V08/lectures/l2.pdf Information hiding decomposition
ADT-oriented

503 11sp © UW CSE • D. Notkin

10

 Data representations not shared computational

components

 Instead, each module provides an interface that hides

the data representation, allowing only access through

the interface

 Change is easier

 Both algorithms and data representations can be changed

in individual modules without affecting others modules

 Reuse is better supported because modules make fewer

assumptions about the others with which they interact

11

http://www.idt.mdh.se/kurser/cdt413/V08/lectures/l2.pdf

Anticipating change?

 A fundamental assumption of information hiding is

the ability to anticipate change

 Can we do this effectively?

 If not, is information hiding unreasonable to pursue?

503 11sp © UW CSE • D. Notkin

12

http://www.idt.mdh.se/kurser/cdt413/V08/lectures/l2.pdf
http://www.idt.mdh.se/kurser/cdt413/V08/lectures/l2.pdf
http://www.idt.mdh.se/kurser/cdt413/V08/lectures/l2.pdf

4/26/2011

4

From a Case for Extreme Programming

503 11sp © UW CSE • D. Notkin

13

 … UC-Berkeley political scientist Aaron Wildavsky … lists two
categories of risk management, anticipation and resilience.

“Anticipation is a mode of control by a central mind; efforts are
made to predict and prevent potential dangers before damage is
done. Resilience is the capacity to cope with unanticipated dangers
after they have become manifest, learning to bounce back. ...
Anticipation seeks to preserve stability: the less fluctuation, the
better. Resilience accommodates variability; ... The positive side of
anticipation is that it encourages imagination and deep thought. And
it is good at eliminating known risks. It can build confidence. But
anticipation doesn't work when the world changes rapidly, and in
unexpected ways. It encourages two types of error: hubristic central
planning and overcaution. (Postrel)”

Is representation change less common?

 We have significantly more knowledge about data

structure design than we did 25 years ago

 Memory is less often a problem than it was

previously, since it’s much less expensive

 Therefore, should we think twice about anticipating

that representations will change – after all, there is

an opportunity cost

503 11sp © UW CSE • D. Notkin

14

Module semantics remain unchanged

 The semantics of the module remain unchanged

when implementations are changed: the client

should only care if the interface is satisfied

 But what captures the semantics of the module? The

signature of the interface? Performance? What else?

 Who cares more about this issue? The clients of the

module or the implementors of the module?

503 11sp © UW CSE • D. Notkin

15

Representation exposure

503 11sp © UW CSE • D. Notkin

16

 Representation exposure occurs (in ADTs specifically, but

in information hiding more generally) when a module

interface and implementation allow a client to learn

“more than they should” about an implementation

 This can, of course, lead to both unexpected

consequences and also a dependence by the client on

the specific implementation

 It is generally the case that careful assessment and

reasoning about the abstraction function and the

representation invariant can identify exposures

http://clabs.org/caseforxp.htm

4/26/2011

5

A few guidelines

503 11sp © UW CSE • D. Notkin

17

 If mutable objects are returned from a module, they can
be mutated without concern for the module’s invariants

 Therefore: Often copy before returning a mutable object –
they can mutate their copy without violating your invariants

 If mutable objects are passed to a module, their value
might change while being used by the module, thus
causing an invariant to break.

 Therefore: Often copy before using.

 If a built-in Iterator is returned, it might have a built-in
remove method (e.g. iterator() in Vector, or HashSet, or
HashMap, or ...)

 Therefore: Beware

Underlying cost model

 Parnas essentially argues that a change to a

module’s implementation is constant cost

 Is this accurate?

 Do tools change the equation?

 Is there a better cost model for change?

503 11sp © UW CSE • D. Notkin

18

503 11sp © UW CSE • D. Notkin

19

Best to change implementation?

 Usually, perhaps, but not always the lowest cost

 Changing a local implementation may not be easy

 Some global changes are straightforward:

mechanically or systematically

 Rob Miller’s simultaneous text editing or Toomim et

al.s work on linked editing or Nita’s on twinning

 Bill Griswold’s work on information transparency

Information hiding reprise

 It’s probably the most important design technique

we know

 And it’s broadly useful

 It raised consciousness about change

 But one needs to evaluate the premises in specific

situations to determine the actual benefits (well, the

actual potential benefits)

503 11sp © UW CSE • D. Notkin

20

4/26/2011

6

503 11sp © UW CSE • D. Notkin

21

Aside: Information Hiding and OO

 Are these the same? Not really

 OO classes are chosen based on the domain of the

problem (in most OO analysis approaches)

 Not necessarily based on change

 But they are obviously related (separating interface

from implementation, e.g.)

 What is the relationship between sub- and super-

classes?

Dependence on implementation

 Gregor Kiczales et al.: clients indeed depend on

some aspects of the underlying implementations in a

broad variety of domains and situations

 What happens when the implementation strategy

for a module depends on how it will be used?

 Aren’t we supposed to separate policy from

mechanism?

 Example: spreadsheet via many small windows?

503 11sp © UW CSE • D. Notkin

22

Poor performance often leads to…

23

“hematomas of duplication” “coding between the lines”

Open implementation

 Decompose into base interface (the “real” operations) and the meta

interface (the operations that let the client control aspects of the

implementation)

 Arose from work in (roughly) reflection in the Meta-Object protocol (MOP)

and led to the development of aspect-oriented programming (which we will

look at next week, from a modularization point of view)

503 11sp © UW CSE • D. Notkin

24

4/26/2011

7

Meta interface examples

 C’s register storage class

 “A declaration of an identifier for an object with
storage-class specifier register suggests that access
to the object be as fast as possible.”

 Unix nice

 High-Performance Fortran

 REAL A(1000,1000),B(998,998)

!HPF$ ALIGN B(I,J) WITH A(I+1,J+1)

!HPF$ DISTRIBUTE A(*,BLOCK)

 …many many more! Quick examples from you?

503 11sp © UW CSE • D. Notkin

25

503 11sp © UW CSE • D. Notkin

26

Layering [Parnas 79]

 A focus on information hiding modules isn’t enough

 One may also consider abstract machines

 In support of program families, which are systems that

have “so much in common that it pays to study their

common aspects before looking at the aspects that

differentiate them”

 Still a focus on anticipated change

503 11sp © UW CSE • D. Notkin

27

The uses relation

 A program A uses a program B if the correctness of
A depends on the presence of a correct version of
B

 Requires specification and implementation of A and
the specification of B

 Again, what is the “specification”? The interface?
Implied or informal semantics?

uses vs. invokes

503 11sp © UW CSE • D. Notkin

28

ipAddr := cache(hostName);

if wrong(ipAddr,hostName) then

 ipAddr := lookup(hostName)

endif

 These relations often but do not always coincide

 Invocation without use: name service with cached hints

 Use without invocation: examples?

4/26/2011

8

503 11sp © UW CSE • D. Notkin

29

Parnas’ observation

 A non-hierarchical uses relation makes it difficult to

produce useful subsets of a system

 So, it is important to design the uses relation using

these criteria

 A is essentially simpler because it uses B

 B is not substantially more complex because it does not

use A

 There is a useful subset containing B but not A

 There is no useful subset containing A but not B

503 11sp © UW CSE • D. Notkin

30

Modules and layers interact?

 Information

hiding modules

and layers are

distinct concepts

How and where

do they overlap

in a system?
Process Creation

Segment Mgmt.

Process Mgmt.

Segment Creation

503 11sp © UW CSE • D. Notkin

31

Language support?

 We have lots of language support for information
hiding modules

 C++ classes, Ada packages, etc.

 We have essentially no language support for
layering

 Operating systems provide support, primarily for
reasons of protection, not abstraction

 Big performance cost to pay for “just” abstraction

 General observation: design ideas not encoded in a
language are less likely to be used

