
4/26/2011

1

CSE503:

SOFTWARE ENGINEERING
DESIGN II

David Notkin

Spring 2011

Today

 One brief project #1 description

 Finish software design introduction

 Open implementation

 Layering/uses relation

 Some consequences of reality in design

503 11sp © UW CSE • D. Notkin

2

Reality: some consequences

503 11sp © UW CSE • D. Notkin

3

 One commonly stated objective of good design is
the ability to reason about the software system

 It is not always clear if this means reasoning about the
structure, or reasoning about the behavior, or (most
likely) both

 Top-down design, ADT-based design, information
hiding, layering all – at least in principle – help to
some degree with reasoning

 One reason is that there is, or there can be, a clear
specification of what the system is intended to do

Claim

503 11sp © UW CSE • D. Notkin

4

 I claim that the basis for reasoning is in large part based
on the fact that in these approaches the names relation
and the invokes relation are closely related

 That is, to invoke a part of a program a second part of
the program must know the first part’s name

 With a specification (formal or otherwise) of the second
part’s interface, the first part can invoke it with
confidence

 This has much in common with the strong relationship
between static structure and dynamic behavior that
Dijkstra advocated

4/26/2011

2

From Lecture #2
5

A look at event-based programming

503 11sp © UW CSE • D. Notkin

6

 One approach that is widely used and difficult to

reason about is event-based programming

 Roughly equivalent to interrupts at the architectural and

operating systems levels

 The key: names and invokes are decoupled (to

varying degrees)

The broadcast analogy

503 11sp © UW CSE • D. Notkin

7

 …has a flaw: people listen to the radio or watch

the TV but (for now, at least) don’t fundamentally

change anything going on at the source of the

broadcast

 But when a programming event is raised, the

computation that is invoked may well change the

behavior of the component that invoked the event

 But that component doesn’t know what components

are invoked, or what they do

A whiteboard example

503 11sp © UW CSE • D. Notkin

8

 A set of vertices and a set of edges

 A desired constraint between vertices and edges –
together they form a graph

 That is, no edge is included the edge set that does not have
the corresponding vertices in the vertex set

 Lots of policies to achieve this constraint

 Direct access to the vertex and edge sets complicate
maintenance of the constraint

 Possible extensions include

 a lazy bit that allows the constraint to be violated

 a count of the number of vertices

4/26/2011

3

Trade-off between flexibility and

reasoning

503 11sp © UW CSE • D. Notkin

9

 At least it seems to be, not only for event-based

programming, but also for exceptions, etc.

 We’ll look at a broader approach – with some

similar tradeoffs – next time when we talk about

aspect-oriented programming

