
NECESSARY BACKGROUND

ON

MEMORY EXPLOITS AND

WEB APPLICATION VULNERABILITIES

1

Outline
2

 Memory safety attacks

 Buffer overruns

 Format string vulnerabilities

 Web application vulnerabilities

 SQL injections

 Cross-site scripting attacks

Buffer Overflows

3

Buffer Overrun Example
4

str ret sfp local str ret sfp local

Frame 1 Frame 2

void lame (void) {
 char small[30];
 gets(small);
 printf("%s\n", small);
}

Input Validation

 Classifying vulnerabilities:
 Buffer overflows can be viewed as an example of improper input validation

 Another related type of vulnerability is information leaks

 Other notable examples:
 Format string vulnerabilities

 SQL injection attacks

 Cross-site scripting attacks

 Mechanisms to prevent attacks
 Better input validation

 Safe programming techniques

 Techniques for detecting potential buffer overflows in code

 Static analysis

 Runtime analysis

 Fuzzing/penetration testing

 Write-box fuzzing

 etc.

5

Secure Programming Techniques

 Validate all input
 Easier said than done

 Why is that?

 Avoid buffer overflows
 Use safe string manipulation functions

 Careful length checking

 Avoid statically declared arrays

 etc.

 Or use a memory-safe language
 Java or C#

 JavaScript (not type-safe)

6

Validating Input

 Determine acceptable input, check for match ---
don’t just check against list of “non-matches”

 Limit maximum length

Watch out for special characters, escape chars.

 Check bounds on integer values

 Check for negative inputs

 Check for large inputs that might cause overflow!

7

Avoid strcpy, …

 We have seen that strcpy is unsafe
 strcpy(buf, str) simply copies memory contents into

buf starting from *str until “\0” is encountered,
ignoring the size of buf

 Avoid strcpy(), strcat(), gets(), etc.
 Use strncpy(), strncat(), instead

 Still, computing proper bounds is difficult in practice

 Easy to mess up, off-by-one errors are common

8

Static and Dynamic Analysis

 Static analysis: run on the source code prior to deployment; check for known flaws
 e.g., flawfinder, cqual

 Or Prefix/Prefast

 Or Coverity or Fortify tools

 Will look at some more recent work in this course as well as older stuff

 Dynamic analysis: try to catch (potential) buffer overflows during program execution
 Soundness

 Precision

 Comparison?
 Static analysis very useful, but not perfect

 False positives

 False negatives

 Dynamic analysis can be better (in tandem with static analysis), but can slow down execution

 Historically of great importance, drove adoption of type-safe languages such as Java and C#

9

Dynamic analysis: Libsafe

 Very simple example of what can be done at
runtime

 Intercepts all calls to, e.g., strcpy(dest, src)

 Validates sufficient space in current stack frame:
 |frame-pointer – dest| > strlen(src)

 If so, executes strcpy; otherwise, terminates
application

10

Preventing Buffer Overflows

 Operating system support:
 Can mark stack segment as non-executable
 Randomize stack location

 Problems:
 Does not defend against `return-to-libc’ exploit
 Overflow sets ret-addr to address of libc function

 Does not prevent general buffer overflow flaws, or
heap overflow

 Basic heap overflows can be helped with ALSR

11

Heap-based Buffer Overruns and Heap Spraying

12

 Buffer overruns consist of two steps
 Introduce the payload

 Cause the program to jump to it

 Can put the payload/shellcode in the heap
 Arbitrary amounts of code

 Doesn’t work with heap randomization

 Location of the payload changes every time

 Heap spraying:
 Allocate multiple copies of the payload

 When the jump happens, it hits the payload with a high probability

StackGuard

 Embed random “canaries” in stack frames and verify their
integrity prior to function return

 This is actually used!

 Helpful, but not foolproof…

str ret sfp local canary str ret sfp local canary

Frame 1 Frame 2

13

More Methods …

 Address obfuscation
 Encrypt return address on stack by XORing with

random string. Decrypt just before returning from
function

 Attacker needs decryption key to set return address to
desired value

14

More Input Validation Flaws

15

Format String Vulnerabilities

 What is the difference between
 printf(buf);
and
 printf(“%s”, buf);

?

 What if buf holds %x ?

 Look at memory, and what printf expects…

16

Format String Exploits

 Technique:
 Declare a variable of type int in line

4 and call it bytes_formatted

 Line 6 the format string specifies
that 20 characters should be
formatted in hexadecimal (“%.20x”)
using buffer

 When this is done, due to the “%n”
specifier write the value 20 to
bytes_formatted

 Result:
 This means that we have written a

value to another memory location

 Very definition of violating memory
safety

 May be possible to gain control over
a program’s execution

#include <stdio.h>

int main() {

 int bytes_formatted=0;

 char
buffer[28]=”ABCDEFGHIJKLMNOPQRSTUVWXYZ”;

 printf(“%.20x%n”,buffer,&bytes_formatted);

 printf(

 “\nThe number of bytes formatted in the
previous printf statement

 was %d\n”,bytes_formatted);
 return 0;

}

17

Other Input Validation Bugs

 Integer overflow…

 Consider the code:
 strncpy(msg+offset, str, slen);

 where the adversary may control offset

 By setting the value high enough, it will wrap around

and be treated as a negative integer!

 Write into the msg buffer instead of after it

18

Web Application Vulnerabilities

19

SQL Injection Attacks

 Affect applications that use untrusted input as part
of an SQL query to a back-end database

 Specific case of a more general problem: using
untrusted input in commands

20

SQL Injection: Example

 Consider a browser form, e.g.:

 When the user enters a number and clicks the button, this
generates an http request like
 https://www.pizza.com/show_orders?month=10

21

Example Continued…

 Upon receiving the request, a Java program might
produce an SQL query as follows:

 A normal query would look like:

sql_query

 = "SELECT pizza, quantity, order_day "

 + "FROM orders "

 + "WHERE userid=" + session.getCurrentUserId()

 + " AND order_month= "

 + request.getParameter("month");

SELECT pizza, quantity, order_day

FROM orders

WHERE userid=4123

AND order_month=10

22

Example Continued…

 What if the user makes a modified http request:
https://www.pizza.com/show_orders?month=0%20OR%201%3D1

 (Parameters transferred in URL-encoded form,
where meta-characters are encoded in ASCII)

 This has the effect of setting
 request.getParameter(“month”)
equal to the string
 0 OR 1=1

23

https://www.pizza.com/show_orders?month=0 OR 1=1

Example Continued

 So the script generates the following SQL query:

 Since AND takes precedence over OR, the above
always evaluates to TRUE

 The attacker gets every entry in the database!

SELECT pizza, quantity, order_day

FROM orders

WHERE userid=4123

AND order_month=0 OR 1=1
(

)

24

Even Worse…

 Craft an http request that generates an SQL query
like the following:

 Attacker gets the entire credit card database as
well!

SELECT pizza, quantity, order_day

FROM orders

WHERE userid=4123

AND order_month=0 OR 1=0

UNION SELECT cardholder, number, exp_date

FROM creditcards

25

More Damage…

 SQL queries can encode multiple commands,
separated by ‘;’

 Craft an http request that generates an SQL query
like the following:

 Credit card table deleted!
 DoS attack

SELECT pizza, quantity, order_day

FROM orders

WHERE userid=4123

AND order_month=0 ;

DROP TABLE creditcards

26

More Damage…

 Craft an http request that generates an SQL query
like the following:

 User (with chosen password) entered as an
administrator!

 Database owned!

SELECT pizza, quantity, order_day

FROM orders

WHERE userid=4123

AND order_month=0 ;

INSERT INTO admin VALUES („hacker‟, ...)

27

May Need to be More Clever…

 Consider the following script for text queries:

 Previous attacks will not work directly, since the
commands will be quoted

 But easy to deal with this…

sql_query

 = "SELECT pizza, quantity, order_day "

 + "FROM orders "

 + "WHERE userid=" + session.getCurrentUserId()

 + " AND topping= „ "

 + request.getParameter(“topping") + “‟”

28

Example Continued…

 Craft an http request where
 request.getParameter(“topping”)

is set to
 abc‟; DROP TABLE creditcards; --

 The effect is to generate the SQL query:

 (‘--’ represents an SQL comment)

SELECT pizza, quantity, order_day

FROM orders

WHERE userid=4123

AND toppings=„abc‟;

DROP TABLE creditcards ; --‟

29

Source: http://xkcd.com/327/

30

Solutions?

 Blacklisting

 Whitelisting

 Encoding routines

 Prepared statements/bind variables

 Mitigate the impact of SQL injection

31

Blacklisting?

 I.e., searching for/preventing ‘bad’ inputs

 E.g., for previous example:

 …where kill_chars() deletes, e.g., quotes and
semicolons

sql_query

 = "SELECT pizza, quantity, order_day "

 + "FROM orders "

 + "WHERE userid=" + session.getCurrentUserId()

 + " AND topping= „ "

 + kill_chars(request.getParameter(“topping"))

 + “‟”

32

Drawbacks of Blacklisting

 How do you know if/when you’ve eliminated all
possible ‘bad’ strings?
 If you miss one, could allow successful attack

 Does not prevent first set of attacks (numeric values)
 Although similar approach could be used, starts to get

complex!

 May conflict with functionality of the database
 E.g., user with name O’Brien

33

Whitelisting

 Check that user-provided input is in some set of
values known to be safe

 E.g., check that month is an integer in the right range

 If invalid input detected, better to reject it than to
try to fix it

 Fixes may introduce vulnerabilities

 Principle of fail-safe defaults

34

Prepared Statements/bind Variables

 Prepared statements: static queries with bind
variables

 Variables not involved in query parsing

 Bind variables: placeholders guaranteed to be data
in correct format

35

A SQL Injection Example in Java

PreparedStatement ps =

 db.prepareStatement(

 "SELECT pizza, quantity, order_day "

 + "FROM orders WHERE userid=?

 AND order_month=?");

ps.setInt(1, session.getCurrentUserId());

ps.setInt(2,

 Integer.parseInt(request.getParameter("month")));

ResultSet res = ps.executeQuery();

Bind variables

36

There’s Even More
37

 Practical SQL Injection: Bit by Bit

 Overall, SQL injection is easy to fix by banning
certain APIs

 Prevent queryExecute-type calls with non-constant
arguments

 Very easy to automate

 See a tool like LAPSE that does it for Java

Cross-site Scripting
38

 If the application is not careful to encode its output
data, an attacker can inject script into the output

out.writeln(“<div>”);

out.writeln(req.getParameter(“name”));

out.writeln(“</div>”);

 name:
 <script>…; xhr.send(document.cookie);</script>

 Simplest version called reflected or type-1 XSS

Memory Exploits and Web App Vulnerabilities Compared

 Buffer overruns
 Stack-based

 Return-to-libc, etc.

 Heap-based

 Heap spraying attacks

 Requires careful programming or
memory-safe languages

 Don’t always help as in the case
of JavaScript-based spraying

 Static analysis tools

 Format string vulnerabilies
 Generally, better, more

restrictive APIs are enough

 Simple static tools help

 Cross-site scripting
 XSS-0, -1, -2, -3

 Requires careful programming

 Static analysis tools

 SQL injection
 Generally, better, more

restrictive APIs are enough

 Simple static tools help

39

