NECESSARY BACKGROUND

ON

MEMORY EXPLOITS AND

WEB APPLICATION VULNERABILITIES

Outline

Memory safety attacks
Buffer overruns
Format string vulnerabilities

Web application vulnerabilities
SQL injections
Cross-site scripting attacks

Buffer Overflows

Buffer Overrun Example

Frame 2

Frame 1

local

sfp

ret

str

local

sfp

ret

str

void lame (void) {

char small[30];

gets(small);

printf("%s\n", small);

Input Validation
_ 5|

o1 Classifying vulnerabilities:
Buffer overflows can be viewed as an example of improper input validation
Another related type of vulnerability is information leaks

o1 Other notable examples:
Format string vulnerabilities
SQL injection attacks
Cross-site scripting attacks

1 Mechanisms to prevent attacks
Better input validation
Safe programming techniques
Techniques for detecting potential buffer overflows in code
m Static analysis
Runtime analysis
Fuzzing/penetration testing
Write-box fuzzing
etc.

Secure Programming Techniques

-1 Validate all input
Easier said than done
Why is that?

o Avoid buffer overflows
Use safe string manipulation functions
Careful length checking
Avoid statically declared arrays
etc.

-1 Or use a memory-safe language
Java or C#
JavaScript (not type-safe)

Validating Input

Determine acceptable input, check for match ---
don’t just check against list of “non-matches”

Limit maximum length
Watch out for special characters, escape chars.

Check bounds on integer values
Check for negative inputs
Check for large inputs that might cause overflow!

Avoid strcpy, ...

We have seen that strcpy is unsafe

strcpy(buf, str) simply copies memory contents into
buf starting from *str until “\0” is encountered,
ignoring the size of buf

Avoid strcpy(), strcat(), gets(), etc.
Use strncpy(), strncat(), instead
Still, computing proper bounds is difficult in practice
Easy to mess up, off-by-one errors are common

Static and Dynamic Analysis
9]

o Static analysis: run on the source code prior to deployment; check for known flaws
e.g., flawfinder, cqual
Or Prefix/Prefast
Or Coverity or Fortify tools
Will look at some more recent work in this course as well as older stuff

o Dynamic analysis: try to catch (potential) buffer overflows during program execution
Soundness
Precision

1 Comparison?

Static analysis very useful, but not perfect

m False positives

m False negatives

Dynamic analysis can be better (in tandem with static analysis), but can slow down execution
Historically of great importance, drove adoption of type-safe languages such as Java and C#

Dynamic analysis: Libsafe

Very simple example of what can be done at
runtime

Intercepts all calls to, e.g., strcpy(dest, src)

Validates sufficient space in current stack frame:
|frame-pointer — dest| > strlen(src)

If so, executes strcpy; otherwise, terminates
application

Preventing Buffer Overflows

Operating system support:
Can mark stack segment as non-executable
Randomize stack location

Problems:

Does not defend against return-to-libc’ exploit
Overflow sets ret-addr to address of libc function

Does not prevent general buffer overflow flaws, or
heap overflow

Basic heap overflows can be helped with ALSR

Heap-based Buffer Overruns and Heap Spraying

Buffer overruns consist of two steps
Introduce the payload
Cause the program to jump to it

Can put the payload/shellcode in the heap
Arbitrary amounts of code
Doesn’t work with heap randomization
Location of the payload changes every time

Heap spraying:
Allocate multiple copies of the payload
When the jump happens, it hits the payload with a high probability

StackGuard

Embed random “canaries” in stack frames and verify their
integrity prior to function return

This is actually used!

Helpful, but not foolproof...

Frame 2

Frame 1

local

canary

sfp

ret

str

local

canary

sfp

ret

str

More Methods ...

Address obfuscation

Encrypt return address on stack by XORing with
random string. Decrypt just before returning from

function
Attacker needs decryption key to set return address to
desired value

More Input Validation Flaws

Format String Vulnerabilities

16
7 What is the difference between

printf (buf) ;
and

printf (“%s”, buf) ;
?

7 What if buf holds %x ?
- Look at memory, and what printf expects...

Format String Exploits
N

o Technique:

Declare a variable of type intin line
4 and call it bytes_formatted

Line 6 the format string specifies
that 20 characters should be
formatted in hexadecimal (“%.20x")
using buffer

When this is done, due to the “%n”
specifier write the value 20 to
bytes formatted

o Result:

This means that we have written a
value to another memory location

Very definition of violating memory
safety

May be possible to gain control over
a program’s execution

#include <stdio.h>
int main() {
int bytes_formatted=0;

char
buffer[28]="ABCDEFGHIJKLMNOPQRSTUVWXYZ"”;

printf(“%.20x%n"”, buffer,&bytes_formatted);
printf(

“A\nThe number of bytes formatted in the
previous printf statement

was %d\n”,bytes_formatted);
return 0;

}

Other Input Validation Bugs

Integer overflow...

Consider the code:
strncpy (msgtoffset, str, slen);

where the adversary may control offset

By setting the value high enough, it will wrap around
and be treated as a negative integer!

Write into the msg buffer instead of after it

_

Web Application Vulnerabilities

SQL Injection Attacks

Affect applications that use untrusted input as part
of an SQL query to a back-end database

Specific case of a more general problem: using
untrusted input in commands

SQL Injection: Example

e

-1 Consider a browser form, e.g.:

"} Review Orders - Mozilla Firefox

X
File Edit Wew Go Bookmarks Toolz Help {:}

<:E| = |:> s % @ @ | https: /v, deliver-me-pizza. com fshow_orde v| © o |@v |

Review Previous Orders

View orders for month: |1{]'
[Search Orders]

Done

o When the user enters a number and clicks the button, this
generates an http request like

https://www.pizza.com/show_orders?month=10

Example Continued...

Upon receiving the request, a Java program might
produce an SQL query as follows:

sql query
= "SELECT pizza, quantity, order day "
+ "FROM orders "
+ "WHERE userid=" + session.getCurrentUserId()
+ " AND order month= "
+ request.getParameter ("month") ;

A normal query would look like:

SELECT pizza, quantity, order day
FROM orders

WHERE userid=4123

AND order month=10

Example Continued...

What if the user makes a modified http request:

(Parameters transferred in URL-encoded form,
where meta-characters are encoded in ASCII)

This has the effect of setting

request.getParameter (“month”)

equal to the string
0O OR 1=1

https://www.pizza.com/show_orders?month=0 OR 1=1

Example Continued

So the script generates the following SQL query:

SELECT pizza, quantity, order day

FROM orders
WHERE(userid=4123
AND order_month=0)OR 1=1

Since AND takes precedence over OR, the above
always evaluates to TRUE
The attacker gets every entry in the database!

Even Worse...

Craft an http request that generates an SQL query
like the following:

SELECT pizza, quantity, order day

FROM orders

WHERE userid=4123

AND order month=0 OR 1=0

UNION SELECT cardholder, number, exp date
FROM creditcards

Attacker gets the entire credit card database as
well!

More Damage...

SQL queries can encode multiple commands,
separated by ‘;’

Craft an http request that generates an SQL query

like the following:

SELECT pizza, quantity, order day
FROM orders

WHERE userid=4123

AND order month=0 ;

DROP TABLE creditcards

Credit card table deleted!
DoS attack

More Damage...

Craft an http request that generates an SQL query
like the following:

SELECT pizza, quantity, order day

FROM orders
WHERE userid=4123

AND order_month=0 ;
INSERT INTO admin VALUES (‘hacker’, ...)

User (with chosen password) entered as an
administrator!
Database owned!

May Need to be More Clever...

Consider the following script for text queries:

sql query
= "SELECT pizza, quantity, order day "
+ "FROM orders "
+ "WHERE userid=" + session.getCurrentUserId()
+ " AND topping= ‘' "
+ request.getParameter (“topping") + “'”

Previous attacks will not work directly, since the
commands will be quoted

But easy to deal with this...

Example Continued...

Craft an http request where
request.getParameter (“topping”)

Is set to
abc’ ; DROP TABLE creditcards; --

The effect is to generate the SQL query:

SELECT pizza, quantity, order day
FROM orders

WHERE userid=4123

AND toppings=‘abc’;

DROP TABLE creditcards ; --

’

(‘--" represents an SQL comment)

HL THIS 1S OH, DEAR - DID HE
YOUR SON' SCHOOL. | BREAK SOMETHING?
VERE HAVING SOME

GHPUTEE TRouse. | N P‘ WAY /

Sm|

DID YOU REALLY
NAME YOUR SON
Robert’); DROP
TABLE Students; -~ 7

!

~ OH,YES. LITTLE
BOBBY TABLES,
WE CALL HIM.

WELL, WE'VE LOST THIS
YEAR'S STUDENT RECORDS.
I HOPE YOURE HAPPY.

{

AND T HOPE
~~ YOU'VE LEARNED
TO SANMIZE YOUR
DATABASE INPUTS.

Source: http://xkcd.com/327/

Solutions?

Blacklisting

Whitelisting

Encoding routines

Prepared statements/bind variables
Mitigate the impact of SQL injection

Blacklisting?

l.e., searching for/preventing ‘bad’ inputs
E.g., for previous example:

sql query
= "SELECT pizza, quantity, order day "
+ "FROM orders "
"WHERE userid=" 4+ session.getCurrentUserId/ ()
" AND topping= ‘"
kill chars (request.getParameter (“topping"))

\N\N7 /7

+
4
+
+

..where kill _chars() deletes, e.g., quotes and
semicolons

Drawbacks of Blacklisting

How do you know if/when you’ve eliminated all
possible ‘bad’ strings?
If you miss one, could allow successful attack

Does not prevent first set of attacks (numeric values)

Although similar approach could be used, starts to get
complex!

May conflict with functionality of the database
E.g., user with name O’Brien

Whitelisting

Check that user-provided input is in some set of
values known to be safe

E.g., check that month is an integer in the right range

If invalid input detected, better to reject it than to
try to fix it

Fixes may introduce vulnerabilities

Principle of fail-safe defaults

Prepared Statements/bind Variables

- Prepared statements: static queries with bind
variables

Variables not involved in query parsing

- Bind variables: placeholders guaranteed to be data
in correct format

A SQL Injection Example in Java
I

PreparedStatement ps =
db.prepareStatement (
"SELECT pizza, quantity, order day "
+ "FROM orders WHERE userid=3
AND order month=?");
ps.setInt (1, session.getCurrentUserId()) ;
ps.setInt (2,
Integer.parselnt (request.getParameter ("month"))) ;
ResultSet res = ps.executeQuery () ;

Bind variables

There’s Even More

Practical SQL Injection: Bit by Bit

Overall, SQL injection is easy to fix by banning

certain APlIs
Prevent queryExecute-type calls with non-constant
arguments
Very easy to automate
See a tool like LAPSE that does it for Java

Cross-site Scripting

If the application is not careful to encode its output
data, an attacker can inject script into the output
out.writeln(“<div>");
out.writeln(reqg.getParameter(“name”));
out.writeln(“</div>");

Nname.

<script>...; xhr.send(document.cookie);</script>

Simplest version called reflected or type-1 XSS

Memory Exploits and Web App Vulnerabilities Compared

Buffer overruns Cross-site scripting
Stack-based XSS-0, -1, -2, -3
Return-to-libc, etc. Requires careful programming
Heap-based Static analysis tools
Heap spraying attacks
Requires careful programming or SQL injection
memory-safe languages

Generally, better, more

Dont always help as in the case restrictive APIs are enough
of JavaScript-based spraying

. . Simple static tools help
Static analysis tools

Format string vulnerabilies

Generally, better, more
restrictive APIs are enough

Simple static tools help

