
NECESSARY BACKGROUND 
 

ON 
 

MEMORY EXPLOITS AND  
 

WEB APPLICATION VULNERABILITIES 

1 



Outline 
2 

 Memory safety attacks 

 Buffer overruns 

 Format string vulnerabilities 

 

 Web application vulnerabilities 

 SQL injections 

 Cross-site scripting attacks 



Buffer Overflows 

3 



Buffer Overrun Example 
4 

str ret sfp local str ret sfp local 

Frame 1 Frame 2 

void lame (void) {  
 char small[30];  
 gets(small);  
 printf("%s\n", small);  
} 
 



Input Validation 

 Classifying vulnerabilities: 
 Buffer overflows can be viewed as an example of improper input validation 

 Another related type of vulnerability is information leaks 

 

 Other notable examples: 
 Format string vulnerabilities 

 SQL injection attacks 

 Cross-site scripting attacks 

 

 Mechanisms to prevent attacks 
 Better input validation 

 Safe programming techniques 

 Techniques for detecting potential buffer overflows in code 

 Static analysis 

 Runtime analysis 

 Fuzzing/penetration testing 

 Write-box fuzzing 

 etc. 

5 



Secure Programming Techniques 

 Validate all input 
 Easier said than done 

 Why is that? 

 

 Avoid buffer overflows 
 Use safe string manipulation functions  

 Careful length checking 

 Avoid statically declared arrays 

 etc. 

 

 Or use a memory-safe language 
 Java or C# 

 JavaScript (not type-safe) 

6 



Validating Input 

 Determine acceptable input, check for match --- 
don’t just check against list of “non-matches” 

 Limit maximum length 

Watch out for special characters, escape chars. 

 

 Check bounds on integer values 

 Check for negative inputs 

 Check for large inputs that might cause overflow! 

7 



Avoid strcpy, … 

 We have seen that strcpy is unsafe 
 strcpy(buf, str) simply copies memory contents into 

buf starting from *str until “\0” is encountered, 
ignoring the size of buf 

 

 Avoid strcpy(), strcat(), gets(), etc. 
 Use strncpy(), strncat(), instead 

 Still, computing proper bounds is difficult in practice 

 Easy to mess up, off-by-one errors are common 

8 



Static and Dynamic Analysis 

 Static analysis: run on the source code prior to deployment; check for known flaws 
 e.g., flawfinder, cqual 

 Or Prefix/Prefast 

 Or Coverity or Fortify tools 

 Will look at some more recent work in this course as well as older stuff 

 

 Dynamic analysis: try to catch (potential) buffer overflows during program execution 
 Soundness 

 Precision 

 

 Comparison? 
 Static analysis very useful, but not perfect 

 False positives 

 False negatives 

 Dynamic analysis can be better (in tandem with static analysis), but can slow down execution 

 Historically of great importance, drove adoption of type-safe languages such as Java and C# 

9 



Dynamic analysis: Libsafe 

 Very simple example of what can be done at 
runtime 

 

 Intercepts all calls to, e.g., strcpy(dest, src) 

 Validates sufficient space in current stack frame: 
 |frame-pointer – dest| > strlen(src) 

 If so, executes strcpy; otherwise, terminates 
application 

10 



Preventing Buffer Overflows 

 Operating system support: 
 Can mark stack segment as non-executable 
 Randomize stack location 

 
 Problems: 
 Does not defend against `return-to-libc’ exploit 
 Overflow sets ret-addr to address of libc function 

 Does not prevent general buffer overflow flaws, or 
heap overflow 

 

 Basic heap overflows can be helped with ALSR 

11 



Heap-based Buffer Overruns and Heap Spraying 

12 

 Buffer overruns consist of two steps 
 Introduce the payload 

 Cause the program to jump to it 

 

 Can put the payload/shellcode in the heap 
 Arbitrary amounts of code 

 Doesn’t work with heap randomization 

 Location of the payload changes every time 

 

 Heap spraying: 
 Allocate multiple copies of the payload 

 When the jump happens, it hits the payload with a high probability 



StackGuard 

 Embed random “canaries” in stack frames and verify their 
integrity prior to function return 

 This is actually used! 

 Helpful, but not foolproof… 

str ret sfp local canary str ret sfp local canary 

Frame 1 Frame 2 

13 



More Methods … 

  Address obfuscation 
 Encrypt return address on stack by XORing with 

random string.  Decrypt just before returning from 
function 

 Attacker needs decryption key to set return address to 
desired value 

14 



More Input Validation Flaws 

15 



Format String Vulnerabilities 

 What is the difference between  
      printf(buf); 
and 
      printf(“%s”, buf); 

? 

 What if buf holds %x ? 

 Look at memory, and what printf expects… 

16 



Format String Exploits 

 Technique: 
 Declare a variable of type int in line 

4 and call it bytes_formatted 

 Line 6 the format string specifies 
that 20 characters should be 
formatted in hexadecimal (“%.20x”) 
using buffer 

 When this is done, due to the “%n” 
specifier write the value 20 to 
bytes_formatted 

 

 Result: 
 This means that we have written a 

value to another memory location 

 Very definition of violating memory 
safety 

 May be possible to gain control over 
a program’s execution 

#include <stdio.h> 

int main() { 

    int bytes_formatted=0; 

    char 
buffer[28]=”ABCDEFGHIJKLMNOPQRSTUVWXYZ”; 

  
    printf(“%.20x%n”,buffer,&bytes_formatted); 

    printf( 

     “\nThe number of bytes formatted in the 
previous printf statement  

 was %d\n”,bytes_formatted);  
   return 0; 

}  

17 



Other Input Validation Bugs 

 Integer overflow… 
 

 Consider the code: 
   strncpy(msg+offset, str, slen); 
 

 where the adversary may control offset  

 
 By setting the value high enough, it will wrap around 

and be treated as a negative integer! 
 

 Write into the msg buffer instead of after it 
 

18 



Web Application Vulnerabilities 

19 



SQL Injection Attacks 

 Affect applications that use untrusted input as part 
of an SQL query to a back-end database 

 

 Specific case of a more general problem: using 
untrusted input in commands 

20 



SQL Injection: Example 

 Consider a browser form, e.g.: 

 

 

 

 

 

 

 

 When the user enters a number and clicks the button, this 
generates an http request like  
      https://www.pizza.com/show_orders?month=10 

21 



Example Continued… 

 Upon receiving the request, a Java program might 
produce an SQL query as follows: 

 

 

 

 

 A normal query would look like: 

sql_query  

      = "SELECT pizza, quantity, order_day " 

          + "FROM orders "  

          + "WHERE userid=" + session.getCurrentUserId()  

          + " AND order_month= "  

          + request.getParameter("month"); 

SELECT pizza, quantity, order_day 

FROM orders 

WHERE userid=4123  

AND order_month=10 

22 



Example Continued… 

 What if the user makes a modified http request: 
https://www.pizza.com/show_orders?month=0%20OR%201%3D1 

 (Parameters transferred in URL-encoded form, 
where meta-characters are encoded in ASCII) 

 This has the effect of setting 
               request.getParameter(“month”)  
equal to the string 
                             0 OR 1=1 

23 

https://www.pizza.com/show_orders?month=0 OR 1=1


Example Continued 

 So the script generates the following SQL query: 

 

 

 

 Since AND takes precedence over OR, the above 
always evaluates to TRUE 

 The attacker gets every entry in the database! 

SELECT pizza, quantity, order_day 

FROM orders 

WHERE userid=4123  

AND order_month=0 OR 1=1 
( 

) 

24 



Even Worse… 

 Craft an http request that generates an SQL query 
like the following: 

 

 

 

 

 Attacker gets the entire credit card database as 
well! 

SELECT pizza, quantity, order_day 

FROM orders 

WHERE userid=4123  

AND order_month=0 OR 1=0 

UNION SELECT cardholder, number, exp_date 

FROM creditcards 

25 



More Damage… 

 SQL queries can encode multiple commands, 
separated by ‘;’ 

 Craft an http request that generates an SQL query 
like the following: 

 

 

 

 Credit card table deleted! 
 DoS attack 

SELECT pizza, quantity, order_day 

FROM orders 

WHERE userid=4123  

AND order_month=0 ; 

DROP TABLE creditcards 

26 



More Damage… 

 Craft an http request that generates an SQL query 
like the following: 

 

 

 

 User (with chosen password) entered as an 
administrator! 

 Database owned! 

SELECT pizza, quantity, order_day 

FROM orders 

WHERE userid=4123  

AND order_month=0 ; 

INSERT INTO admin VALUES („hacker‟, ...) 

27 



May Need to be More Clever… 

 Consider the following script for text queries: 
 
 
 
 
 

 Previous attacks will not work directly, since the 
commands will be quoted 
 

 But easy to deal with this… 

sql_query  

      = "SELECT pizza, quantity, order_day " 

          + "FROM orders "  

          + "WHERE userid=" + session.getCurrentUserId()  

          + " AND topping= „ "  

          + request.getParameter(“topping") + “‟” 

28 



Example Continued… 

 Craft an http request where           
               request.getParameter(“topping”) 

is set to 
                 abc‟; DROP TABLE creditcards; -- 

 The effect is to generate the SQL query: 

 

 

 

 (‘--’ represents an SQL comment) 

SELECT pizza, quantity, order_day 

FROM orders 

WHERE userid=4123  

AND toppings=„abc‟; 

DROP TABLE creditcards ; --‟ 

29 



Source: http://xkcd.com/327/ 

30 



Solutions? 

 Blacklisting 

 Whitelisting 

 Encoding routines 

 Prepared statements/bind variables 

 Mitigate the impact of SQL injection 

31 



Blacklisting? 

 I.e., searching for/preventing ‘bad’ inputs 

 E.g., for previous example: 

 

 

 

 

 

 …where kill_chars() deletes, e.g., quotes and 
semicolons 

sql_query  

      = "SELECT pizza, quantity, order_day " 

          + "FROM orders "  

          + "WHERE userid=" + session.getCurrentUserId()  

          + " AND topping= „ "  

          + kill_chars(request.getParameter(“topping"))  

          + “‟” 

32 



Drawbacks of Blacklisting 

 How do you know if/when you’ve eliminated all 
possible ‘bad’ strings? 
 If you miss one, could allow successful attack 

 

 Does not prevent first set of attacks (numeric values) 
 Although similar approach could be used, starts to get 

complex! 

 

 May conflict with functionality of the database 
 E.g., user with name O’Brien 

33 



Whitelisting 

 Check that user-provided input is in some set of 
values known to be safe 

 E.g., check that month is an integer in the right range 

 

 If invalid input detected, better to reject it than to 
try to fix it 

 Fixes may introduce vulnerabilities 

 Principle of fail-safe defaults 

34 



Prepared Statements/bind Variables 

 Prepared statements: static queries with bind 
variables 

 Variables not involved in query parsing 

 

 Bind variables: placeholders guaranteed to be data 
in correct format 

35 



A SQL Injection Example in Java 

PreparedStatement ps = 

         db.prepareStatement( 

                "SELECT pizza, quantity, order_day " 

                + "FROM orders WHERE userid=?  

                AND order_month=?"); 

 

ps.setInt(1, session.getCurrentUserId()); 

ps.setInt(2,  

        Integer.parseInt(request.getParameter("month"))); 

ResultSet res = ps.executeQuery(); 

Bind variables 

36 



There’s Even More 
37 

 Practical SQL Injection: Bit by Bit 

 

 Overall, SQL injection is easy to fix by banning 
certain APIs 

 Prevent queryExecute-type calls with non-constant 
arguments 

 Very easy to automate 

 See a tool like LAPSE that does it for Java 



Cross-site Scripting 
38 

 If the application is not careful to encode its output 
data, an attacker can inject script into the output 

out.writeln(“<div>”); 

out.writeln(req.getParameter(“name”)); 

out.writeln(“</div>”); 

 

 name:  
 <script>…; xhr.send(document.cookie);</script> 

 

 Simplest version called reflected or type-1 XSS 
 



Memory Exploits and Web App Vulnerabilities Compared 

 Buffer overruns 
 Stack-based 

 Return-to-libc, etc. 

 Heap-based 

 Heap spraying attacks 

 Requires careful programming or 
memory-safe languages  

 Don’t always help as in the case 
of JavaScript-based spraying 

 Static analysis tools 

 

 Format string vulnerabilies 
 Generally, better, more 

restrictive APIs are enough 

 Simple static tools help 

 Cross-site scripting 
 XSS-0, -1, -2, -3 

 Requires careful programming 

 Static analysis tools 

 

 SQL injection 
 Generally, better, more 

restrictive APIs are enough 

 Simple static tools help 

39 


