
Spectator: Detection and
Containment of JavaScript Worms

By Livshits & Cui

Presented by Colin

The Problem

• AJAX gives JS an environment nearly as
flexible as a C/asm on a desktop OS

– Buffer overruns allow asm code injection

– Tainted string propagation allows JS code injection

• Now worms can propagate through JS as well

Example: Samy

One guy figures out how to embed Javascript in
CSS, which MySpace doesn’t filter

Samy (cont.)

• Visitors to his profile run the JS on page load

• The script “friends” the author, then adds the
same source to their profile.

• Now anyone who visits that profile would also
get infected, and so on…

It Gets Worse…

• This could potentially work on a site like
GMail...

• Windows Scripting Engine understands JS…

• Sophos lists over 380 JS worms

• All known static analyses for finding these
bugs are either unsound, or sound for a
narrow class of bugs, so we really can’t just
find them all statically

Idea for a Solution

• Monitor the interactions of many users, and
watch the propagation of information

– If the same information propagates across, say
100 users, this is probably a worm.

Overall Design
Se

rv
er

 A
p

p
lic

at
io

n

Spectator Proxy

Site Domain (e.g. myspace.com)

C
lie

n
t

request

tag

page

tag

page

id

request

id

id

Server-Side Tag Flow

• Server Interactions

– Proxy tags requests containing HTML/JS

– Proxy checks for tags in pages pulled from the
server

<div spectator_tag=134>

 …

</div>

Client-Side Tag Flow

• Client Interactions

– Proxy issues HTTP-only cookie w/ ID for the set of
tags in the current page

– Browser sends ID back to proxy w/ each request

Tracking Causality

• A tag present on a page is assumed to cause
the subsequent request

• Consider a propagation graph:

Propagation Graphs

• Record propagation of tags on upload

• Track IPs along with tags

• Heuristic: If the # of unique IPs along a path
exceeds a threshold d, flag a worm

• Accurately modeling the graph is exponential

Accurate Graph Approximate Graph

Time to insert O(2n) O(1) on average

Space to track path length O(n) O(n)

Blocking futher propagation O(n) O(n)

Simulations

• Used a MySpace clone to test scaling

• Three propagation models

– Random

– Linear

– Biased

• Tested scalability of graph tracking

Graph Insertion Time

Graph Diameter

Proof-of-Concept Exploit

• Used AJAX blog

• Implemented a manual-propagation worm

• Spectator detected and stopped the worm

Discussion

• Where do false negatives come from? Can a
worm trick Spectator by hiding propagation
behind legitimate user activity?

• What assumptions does Spectator make about
interactions of individual users (think about
multiple windows, tabs…)

• Is this a good match for Gmail’s HTTPS-only
connections?

Static Detection of Security
Vulnerabilities in Scripting

Languages

By Xie & Aiken

Presented by Colin

The Problem

• SQL Injection

• PHP makes it difficult to do a traditional static
analysis

– include

– extract

– dynamic typing

– implicit casts everywhere

– scoping & uninitialized variables

A Solution

• A 3-tier static analysis

– Symbolic execution to summarize basic blocks

• Well-chosen symbolic domain

– Block summaries make function summaries

– Function summaries build a program summary

Symbolic Execution for Basic Blocks

• Novel choice of symbolic values

– Strings modeled as concatenations of literals and
non-deterministic containment
 <β1,…,βn> where β=…|contains(σ)|…

– Booleans include an ultra-lightweight use of
dependent types:
 untaint(σ0,σ1)

Block Summaries

• E: must be sanitized on entry

• D: locations defined by the block

• F: value flow

• T: true if the block exits the program

• R: return value if not a termination block

• U: locations untainted by this block

Example Block & Summary

validate($q);

$r = db_query($q.$a);

return $r;

• E: {$a}

• D: {$r}

• F: {}

• T: false

• R: { _|_ }

• U: {$q}

Using Block Summaries

• Paper hand-waves with “well-known techniques”
– Backward propagation of sanitization req.s

– Forward propagation of sanitized values, returns, with
intersection or union at join points

• Dealing with untaint:
 if (<untaint(σ0,σ1)>) {
 <check with σ1 sanitized>
 } else {
 <check with σ0 sanitized>
 }

Function Summaries

• E: must be sanitized on entry

• R: values that may propagate to the return val

• S: values always sanitized by the function

• X: whether the function always exits the
program

Example Function & Summary

function

runq($q, $a) {

 validate($q);

 $r =

db_query($q.$a);

 return $r;

}

• E: {$a}

• R: contains($q, $a)

• S: {$q}

• X: false

Using Function Summaries

• Replace formal arguments with actual
arguments in the summary

• Cut successors if the function always exits

Checking Main

function

runq($q, $a) {

 validate($q);

 $r =

db_query($q.$a);

 return $r;

}

runq($q,$a);

• E: {$a}

• R: contains($q, $a)

• S: {$q}

• X: false

E is the set of unsanitized
program inputs!

Evaluation

App (KLOC) Errors Bugs (FP) Warnings

News Pro (6.5) 8 8 (0) 8

myBloggie (9.2) 16 16 (0) 23

PHP Webthings (38.3) 20 20 (0) 6

DCP Portal (121) 39 39 (0) 55

e107 (126) 16 16 (0) 23

Total 99 99 (0) 115

•Only errors were investigated, warnings may
contain more bugs.
•Hand-waving on the vulnerability and bug
verification details.

PHP Fusion

• Uses extract($_POST,
EXTR_OVERWRITE)

• Allows exploits by adding
extra POST parameters
for variables uninitialized
in the source

• Example: $new_pass is
uninitialized

for ($i=0;$i<7;$i++)

 $new_pass .= chr(rand(97,122));

…

$result = dbquery(“UPDATE ”.$db_prefix.“users

 SET user_password=md5(‘$new_pass’)

 WHERE user_id=‘ ”.$data*‘user_id’+.” ‘ “);

PHP Fusion

• Uses extract($_POST,
EXTR_OVERWRITE)

• Allows exploits by adding
extra POST parameters
for variables uninitialized
in the source

• Example: $new_pass is
uninitialized

for ($i=0;$i<7;$i++)

 $new_pass .= chr(rand(97,122));

…

$result = dbquery(“UPDATE ”.$db_prefix.“users

 SET user_password=md5(‘$new_pass’)

 WHERE user_id=‘ ”.$data*‘user_id’+.” ‘ “);

Exploit parameter:
&new_pass=abc%27%29%2cuser_level=%27103%27%2cuser_aim=%28%27

Produces $result:
UPDATE users SET user_password=md5(‘abc’), user_level=‘103’, user_aim=‘?????’)
 WHERE user_id=‘userid’

Comparing to PQL

Xie & Aiken (PHP)

• Tailored to PHP’s built-in
string concatenation

• Infers sanitization functions
from a base set

• Handles relation between
return values and sanitized
values

• Unsound (specialized to
strings and booleans)

• Effective, few FP

• Roughly, taint inference

Livshits & Lam (Java)

• Requires specifying the
propagation relation

• Sanitizers must be omitted
from derivation function

• Cannot handle sanitization
checkers, only producers of
new sanitized values

• Sound

• Effective, few FP

• Roughly, taint flow analysis

Discussion

• How much would need to change to track
other sorts of properties?

• What makes this system unsound?

• Where exactly does this system lose
precision?

