Spectator: Detection and
Containment of JavaScript Worms

By Livshits & Cui

Presented by Colin

The Problem

* AJAX gives JS an environment nearly as
flexible as a C/asm on a desktop OS

— Buffer overruns allow asm code injection
— Tainted string propagation allows JS code injection

* Now worms can propagate through JS as well

Example: Samy

Eile Edit View History Bookmarks Tools Help

Enter information about yourself:

L3

SCR
IET
[function() {var
G=YRHOO.util.Dom, L=YAHOO.util .Event, I=YAHOD. lang, B=YRHOO . widget .Overlay, J=YAHOO.widget .Menu, D=

if(0) {R.checked=true;}}R.value=Q;return R;}function H(N,T) {var

M=N.nodeName .tolUpperCase () ,B=this, 5,0, P;function T(V)}{if (! (V in T)) {5=N.gecAttributelNode (V) :
if(5&& ("value™ in 5))} {T[V]=5.value;}}}function Q) {U("type™) ,if(T.type=="button™)
{T.cype="push™; }if (! ("disabled” in T)){T.disabled=N.disabled; }U("name") ;U0("valus")
Ti"cicle”) ;iswitch (M) {case"A":T.cype="1ink";U("href") ;T("target") ;break; case"INPUT"::1Q () ;

if (! ("checked™ in T)){T.checked=N.checked; }break;case"BUITON":Q () sC=N.parentNode.parentNode;
ifi(G. hasClass({} thls C55 CLASS NAME+"-checked"))

ss[(} this.C55 CLASS NAME+"- dlsahled"]]

1| n |

m

Done # E Y¥Slow

One guy figures out how to embed Javascript in

CSS, which MySpace doesn’t filter

Samy (cont.)

 Visitors to his profile run the JS on page load

* The script “friends” the author, then adds the
same source to their profile.

* Now anyone who visits that profile would also
get infected, and so on...

It Gets Worse...

This could potentially work on a site like
GMail...

Windows Scripting Engine understands JS...
Sophos lists over 380 JS worms

All known static analyses for finding these
bugs are either unsound, or sound for a
narrow class of bugs, so we really can’t just
find them all statically

ldea for a Solution

 Monitor the interactions of many users, and
watch the propagation of information

— If the same information propagates across, say
100 users, this is probably a worm.

Overall Design

Spectator Proxy

— B

tag

(e
RS,
)

©
=

o

o
<

p .

()

>

S

(<)
(9p]

Site Domain (e.g. myspace.com)

Server-Side Tag Flow

* Server Interactions
— Proxy tags requests containing HTML/JS

— Proxy checks for tags in pages pulled from the
server

<div spectator tag=134>
...

</div>

Client-Side Tag Flow

 Client Interactions

— Proxy issues HTTP-only cookie w/ ID for the set of
tags in the current page

— Browser sends ID back to proxy w/ each request

Tracking Causality

e A tag present on a page is assumed to cause
the subsequent request

* Consider a propagation graph:

e

Propagation Graphs

* Record propagation of tags on upload
* Track IPs along with tags

* Heuristic: If the # of unique IPs along a path
exceeds a threshold d, flag a worm

* Accurately modeling the graph is exponential

_ Accurate Graph | Approximate Graph

Time to insert O(2") O(1) on average
Space to track path length O(n) O(n)
Blocking futher propagation O(n) O(n)

Simulations

* Used a MySpace clone to test scaling

 Three propagation models
— Random
— Linear
— Biased

* Tested scalability of graph tracking

Graph Insertion Time

0.04
0.035
0.03
0.025
0.02
0.015
0.01
0.005

2.536
(worm marking)

109
163
217

271
325
379

433
487
541
595
649
703

Scenario 1

757
811

865
919
973
1,027

Scenario 2

1,081

1,135

1,189

1,243
1,297
1,351
1,405
1,459

20
18
16
14
12
10

Lo I LS R < O = T #]

Graph Diameter

Approximate

Proof-of-Concept Exploit

* Used AJAX blog
* Implemented a manual-propagation worm
* Spectator detected and stopped the worm

Discussion

 Where do false negatives come from? Can a
worm trick Spectator by hiding propagation
behind legitimate user activity?

* What assumptions does Spectator make about
interactions of individual users (think about
multiple windows, tabs...)

* |s this a good match for Gmail’s HTTPS-only
connections?

Static Detection of Security
Vulnerabilities in Scripting
Languages
By Xie & Aiken

Presented by Colin

The Problem

* SQL Injection
 PHP makes it difficult to do a traditional static
analysis
— include
— extract
— dynamic typing
— implicit casts everywhere
— scoping & uninitialized variables

A Solution

* A 3-tier static analysis

— Symbolic execution to summarize basic blocks
* Well-chosen symbolic domain

— Block summaries make function summaries
— Function summaries build a program summary

Symbolic Execution for Basic Blocks

* Novel choice of symbolic values

— Strings modeled as concatenations of literals and
non-deterministic containment
<B,,-..,B,> where B=...| contains(o)|...

— Booleans include an ultra-lightweight use of
dependent types:
untaint(o,,0,)

Block Summaries

E: must be sanitized on entry

D: locations defined by the block

F: value flow

T: true if the block exits the program

R: return value if not a termination block
U: locations untainted by this block

Example Block & Summary

validate ($q) ; e E: {Sa}
Sr = db query($Sg.%a); D: {Sr}
return Sr;

) + F)

e T:false

* Re{_|_}
* U:{Sq}

Using Block Summaries

e Paper hand-waves with “well-known techniques”
— Backward propagation of sanitization req.s
— Forward propagation of sanitized values, returns, with
intersection or union at join points
e Dealing with untaint:
if (<untaint(o,,0,)>) {
<check with o, sanitized>
} else {
<check with o, sanitized>
}

Function Summaries

E: must be sanitized on entry
R: values that may propagate to the return val
S: values always sanitized by the function

X: whether the function always exits the
program

Example Function & Summary

function e E: {Sa}
rung ($q, $a) { * R: contains($q, $a)
validate ($q) ;
e S:
o {Sq}

db query ($g.$a) ; e X:false

return Sr;

Using Function Summaries

* Replace formal arguments with actual
arguments in the summary

e Cut successors if the function always exits

Checking Main

function e E: {Sa}
rung ($q, $a) { * R: contains($q, $a)
validate ($q) ;
e S:
o {Sq}

db query ($g.$a) ; e X:false

return Sr;

E is the set of unsanitized
rung($qg, sa) ; program inputs!

Evaluation

Aob (K100 R T 7

News Pro (6.5)

myBloggie (9.2) 16 16 (O) 23
PHP Webthings (38.3) 20 20 (0) 6
DCP Portal (121) 39 39 (0) 55
el07 (126) 16 16 (0) 23
Total 99 99 (0) 115

*Only errors were investigated, warnings may
contain more bugs.

*Hand-waving on the vulnerability and bug
verification details.

PHP Fusion

e Uses extract(S_POST, for (Si=0;5i<7;Si++)

EXTR_OVERWRITE) Snew_pass .= chr(rand(97,122));

* Allows exploits by adding
extra POST parameters
for variables uninitialized
in the source

Sresult = dbquery(“UPDATE ”.Sdb_prefix.“users
SET user_password=md5(‘Snew_pass’)

* Example: Snew_pass is WHERE user_id="".5data[‘user_id'].” * “);

uninitialized

PHP Fusion

Uses extract($S_POST, for (Si=0;5i<7;Si++)
EXTR_OVERWRITE) Snew pass .= chr(rand(97,122));
Allows exploits by adding

extra P_OST para.m.e.te.rs Sresult = dbquery(“UPDATE ”.Sdb_prefix.“users
for variables uninitialized

in the source SET user_password=md5(‘Snew_pass’)

Example: Snew_pass is WHERE user_id="".5data[‘user_id'].” * “);

uninitialized

Exploit parameter:
&new_pass=abc%27%29%2cuser_level=%27103%27%2cuser_aim=%28%27

Produces Sresult:

WHERE user_id=‘userid’

Comparing to PQL

Xie & Aiken (PHP)

Tailored to PHP’s built-in
string concatenation

Infers sanitization functions
from a base set

Handles relation between
return values and sanitized
values

Unsound (specialized to
strings and booleans)

Effective, few FP
Roughly, taint inference

Livshits & Lam (Java)

Requires specifying the
propagation relation

Sanitizers must be omitted
from derivation function

Cannot handle sanitization
checkers, only producers of
new sanitized values

Sound

Effective, few FP
Roughly, taint flow analysis

Discussion

* How much would need to change to track
other sorts of properties?

* What makes this system unsound?

* Where exactly does this system lose
precision?

