
Web-Based Malware

Jason Ganzhorn

5-12-2010

1

Background

• A large number of transactions take place over
the Internet

– Shopping

– Communication

– Browse News

• It’s likely that you perform some of these
transactions as well.

2

Scenario (Setup)

• You like to read articles about the latest
developments in gadgetry.

• Many blogs allows readers to comment on
articles, and typically these comments will
load along with the page when you load up
the article.

• You also use IE 6 because you don’t believe in
newfangled browsers (but you still like
gadgets).

3

Scenario (Security Breaches)

• A fairly popular tech blog known as
tech.gadget is mostly funded by advertising
and pulls ads from a common online
advertising agency.

• A hacker pays the agency to distribute an ad
containing malicious code to test a package of
exploits on viewers’ computers.

4

Scenario (Download Stage)

• It so happens that your IE 6 has one of the
targeted vulnerabilities.

• You search for tech news, find a cool article at
tech.gadget, and then read it, ignoring the
hacker’s ad.

• However, one of the ad’s exploits kicks in and
a piece of malware is transferred to your
machine.

5

Scenario (Finale)

• Now there is a piece of malicious software
running on your computer.

• This could be:

– a keylogger

– a bot

– a browsing history tracker

• Obviously, this is not good.

6

So What?

• None of us are more than a few minor version
numbers behind (and almost certainly not
running IE 6), so why is this a big deal?

• Many people don’t understand why security
updates are important. Why update if I don’t
see something broken?

7

The Update Problem

As you can see from these
charts, some people simply do
not update their browsers.

Why not?
• Ignorance – not everyone is
tech savvy enough to know
that security patches are a
good thing.
• Difficulty – for a large
company, a major version
upgrade can be quite the IT
hassle.

8

Slow Update Adoption

9

Charts on last two slides from: http://www.techzoom.net/publications/insecurity-iceberg/

http://www.techzoom.net/publications/insecurity-iceberg/
http://www.techzoom.net/publications/insecurity-iceberg/
http://www.techzoom.net/publications/insecurity-iceberg/

What to Do?

• There’s a lot of people out there with
potentially vulnerable browsers.

• It would be nice if there were a way to identify
sites that could potentially infect you with
malicious software before you just blindly click
on them from search results, without having
to update your browser.

• It turns out that some people from Google
have been looking into just that.

10

THE GHOST IN THE BROWSER
Analysis of Web-based Malware

Niels Provos, Dean McNamee, Panayiotis Mavrommatis, Ke Wang,
Nagendra Modadugu

11

The Goal

• Google has an extensive repository of pages
on the web.

• Utilizing these resources, the researchers are
trying to identify which of those pages could
potentially be malicious.

12

Size of the Google Index

Go here for more information on how the index size was estimated.
Note that Google does not appear to officially release the size of
their search index any more.

13

http://www.worldwidewebsize.com/

Potential Problems

• Impact of false positives – if a legitimate
website is marked as a potential distributor of
malware, that could be bad for its business.

• Sheer number of pages on the web.

– Netcraft reports in their April 2010 survey that
they received responses from 205,368,103 sites.

– The Google index has somewhere around 15
billion pages.

14

http://netcraft.com/

Dealing with the Web

• There are a lot of pages on the web. How can
this number be pared down to something that
is reasonable to examine?

• The Google researchers apply simple
heuristics to each page to determine whether
a page attempts to exploit a web browser.

• Pages that test positive under these heuristics
are then examined more closely.

15

Detection Architecture Diagram

16

MapReduce Description

• A programming model that operates in two
stages.

– Map stage: a sequence of key-value pairs is read
as input and a sequence of intermediate key-value
pairs is output

– Reduce stage: All intermediate values associated
with the same intermediate key are merged and
output as a final sequence of key-value pairs.

17

MapReduce Process in this Paper

<mal.ici.ous.com, mal.ici.ous.com/totallynotsuspect.cgi?q=345>
<mal.ici.ous.com, mal.ici.ous.com/v2.php?a=10>
<cnn.com/news/tech/index.htm, mal.ici.ous.com/v2.php?a=14>
<engadget.com, mal.ici.ous.com/totallynotsuspect.cgi?q=100>
... and so on...

Map Stage

Reduce Stage

<mal.ici.ous.com, mal.ici.ous.com/totallynotsuspect.cgi?q=345>
<cnn.com/news/tech/index.htm, mal.ici.ous.com/v2.php?a=14>
<engadget.com, mal.ici.ous.com/totallynotsuspect.cgi?q=100>
... and so on...

18

Map Stage

• The Map stage is run on all crawled web
pages.

• The URL of each analyzed web page is a key.

• The HTML in each page is parsed; links in
known suspicious elements such as iframes
pointing to malware-distributing hosts are
stored as values.

19

Map Stage (cont’d.)

• Another heuristic used to identify suspicious
links at this stage relies on detection of
abnormalities such as heavy obfuscation.

• On completion, this stage yields an
intermediate list of URLs as keys and all links
from that page to possibly malicious URLs as
values.

20

MapReduce Process in this Paper

<mal.ici.ous.com, mal.ici.ous.com/totallynotsuspect.cgi?q=345>
<mal.ici.ous.com, mal.ici.ous.com/v2.php?a=10>
<cnn.com/news/tech/index.htm, mal.ici.ous.com/v2.php?a=14>
<engadget.com, mal.ici.ous.com/totallynotsuspect.cgi?q=100>
... and so on...

Map Stage

Reduce Stage

<mal.ici.ous.com, mal.ici.ous.com/totallynotsuspect.cgi?q=345>
<cnn.com/news/tech/index.htm, mal.ici.ous.com/v2.php?a=14>
<engadget.com, mal.ici.ous.com/totallynotsuspect.cgi?q=100>
... and so on...

21

Reduce Stage

• The Reduce stage is run on all the
intermediate key-value pairs.

• It is very simple – all but the first intermediate
value is discarded for each intermediate key.

• On completion, this stage yields a list of
potentially malicious URLs and an example of
a possibly suspect link from each of them.

22

MapReduce Results

• This MapReduce process pares the number of
web pages to process from several billion to a
few million.

• The number of web pages to process can in
fact be reduced farther, using a second
MapReduce step to sample by site instead of
by page.

23

Detection Architecture Diagram

24

Exploit Confirmation

• Even after the MapReduce step, there are still
several million pages with possible links to
exploits.

• How to confirm whether these pages actually
cause a web browser exploit?

25

Exploit Testing

• Each URL is fed to a copy of Internet Explorer
running in a virtual machine.

• All HTTP fetches and state changes in the VM
can be tracked. These state changes include:

– New process startup

– Registry changes

– File system changes

26

Potential Exploit Scoring

• Each recorded component is scored to provide
an overall score.
– Example: each HTTP fetch is classified using a

number of different anti-virus engines.

• Each individual score is then summed up to
form an overall score for the analysis

• If the majority of URLs on a site are malicious,
some or all of the site might be labeled as
harmful when shown as a search result.

27

Evaluation – Throughput

28

Evaluation - Throughput

• This analysis originally processed 50,000
unique URLs per day.
– Optimizations increased this rate to 300,000 per

day.

• In-depth analysis of 4.5 million URLs at the
time of writing.
– 450,000 engaged in drive-by-downloads.

– 700,000 more seemed malicious but with lower
confidence.

29

Content Control and Dependencies

• How can you lose control of content on your
page?

– Web server insecurity – if an adversary can take
control of the server, they can modify its content,
such as its templating system

– User-contributed content – poor sanitization of
input can lead to injected code. The researchers
discovered several bulletin boards that allowed
the insertion of arbitrary HTML.

30

Content Control and Dependencies

– Advertising – “sub-letting” trust issues

• Here‘s a real-life example:

• A banner advertisement from a large American advertising
company was delivered in the form of JS that generated
more JS.

• This new JS chained through another large American agency
and then a smaller one that apparently used geo-targeting.

• The geo-targeted ad resulted in an iframe pointing to a
Russian advertising company.

• That iframe requested encrypted JS from an IP address that
attempted several exploits, some of which were successful.

• Trust is not transitive.

31

Content Control and Dependencies

• Web masters sometimes include external JS or
iframes to provide additional functionality.

• The paper gives an example of a page that linked to a free
statistics counter.

• The counter worked benignly for about four years.

• Then the linked JS was changed to instead try to exploit
every visitor to pages linking to the supposed counter.

• Another trust issue – even if you trust the original content
provider, you have no control over what happens to the
external code you link to.

32

Exploitation Mechanisms

• Sometimes malicious JS targets specific
vulnerabilities.

– Microsoft Data Access Component vulnerability
(required only about 20 lines of JS to reliably
launch an arbitrary binary on a vulnerable
installation)

– Microsoft WebViewFolderIcon vulnerability
exploited using JS heap spraying techniques

33

Exploitation Mechanisms

• Exploiting one vulnerability is limiting. Multi-
exploit kits are typically more effective.

• An example is the MPack kit produced by
Russian crackers.
– Commercial software ($500 - $1000)

– Technical support

– Software vulnerability updates

– Customized attacks to victim browsers, including
IE, Firefox, and Opera.

– More fascinating details here.

34

http://www.symantec.com/connect/blogs/mpack-packed-full-badness

Exploitation Mechanisms

• What if the user has no discoverable
exploitable vulnerabilities?

• Fall back on good old social engineering and
promise the user content they might find
intriguing.

• Example: Offer the user copyrighted video
content for “free” and then claim a “codec” is
needed to correctly play the video.

35

Trends in Malware

• In the arms race between malware generation
and detection, some trends have emerged.

• Exploit code is often obfuscated

– The paper gives an example of a VBScript exploit
that was escaped twice using JavaScript escaping.

– Even some reputable web pages serve obfuscated
JavaScript.

36

Trends in Malware

• The authors also attempted to classify the
different types of malware that use the web to
deploy. The stated goal was to discover
whether web-based malware was being used
to construct botnets.

• Their automated analysis seems very rough,
with only “Trojan,” “Adware,” and
“Unknown/Obfuscated” categories.

37

Trends in Malware

38

Trends in Malware

• Most of the examined exploits were hosted on
third-party servers and not on the
compromised web site.

• Occasionally, all requests to the legitimate site
were redirected to a malicious site.

• Many exploits are hosted on multiple servers
as well, to minimize the chance of failure.

• A few of the malicious URLs pointed to rapidly
changing malware binaries.

39

Detection and Analysis of Drive-by-
Download Attacks and Malicious

JavaScript Code

Marco Cova, Christopher Kruegel,
Giovanni Vigna

40

Summary

• The problem is that malicious JavaScript code
can be very difficult to identify due to the
dynamic nature of JavaScript.

• The paper presents a solution built around
anomaly detection with emulation.

• Machine-learning techniques are used to
establish profiles of “normal” JavaScript code.

41

Detection Technique

• Detection is based on finding anomalies which
include:
– Redirection chains.
– Differences in served JS based on reported browser

version.
– Differences in the JS served to the same IP for

consecutive identical requests.
– Environment preparation (including heap spraying)
– Exploitation patterns (such as odd plugin-loading

behavior)
– Extensive deobfuscation (one feature to look for is an

abnormal amount of dynamic code execution)

42

Simple Code Obfuscation Example

• This is a very
basic example of
code
obfuscation.

• Real obfuscated
code is often
polymorphic and
dynamically
generated.

var a="Hello World!";

function MsgBox(msg)

{

 alert(msg+"\n"+a);

}

MsgBox("OK");

eval(function(p,a,c,k,e,d){e=functio

n(c){return

c};if(!''.replace(/^/,String)){while

(c--

){d[c]=k[c]||c}k=[function(e){return

d[e]}];e=function(){return'\\w+'};c=

1};while(c--

){if(k[c]){p=p.replace(new

RegExp('\\b'+e(c)+'\\b','g'),k[c])}}

return p}('4 0="3 5!";9

2(1){6(1+"\\7"+0)}2("8");',10,10,'a|

msg|MsgBox|Hello|var|World|alert|n|O

K|function'.split('|'),0,{}))

43

Use of Models

• Models are constructs designed to assign a
probability score to a feature value, given
some established model of “normality.”

– Example: suppose there are 70 instantiated
plugins/ActiveX controls on a page. The “normal”
number has been established to be roughly 4-5, so
the model assigns a very low probability that 70 is
a normal value.

44

Use of Models

• Models operate in either:

– Detection mode.

– Training mode.

• There are a few different types of models
utilized – paper has much more detailed
information.

• Overall anomaly score assigned as weighted
sum of all model scores.

45

Use of Emulation

• Emulation is designed to reveal the true behavior
of the JavaScript code.

• HtmlUnit – Java-based framework for testing web
applications.
– Implements standard browser functionality (except

visual page rendering).

– Models HTML documents.

– Supports JavaScript using Mozilla Rhino interpreter.

• HtmlUnit and Rhino were instrumented to extract
the features used in the anomaly detection.

46

Diagram of Analysis Method

47

Web Page
HtmlUnit + Rhino

Emulation

Events/Features Models

Page Anomaly Score

Evaluation of JSAND System

• Proposal was implemented as a system called
JSAND.

• System can classify exploits used by a
malicious page.

• System can use classification information to
generate exploit signatures for other tools.

48

Evaluation - Datasets

• Known-good dataset – used to train models,
determine anomaly thresholds, and compute
false positives.

• Known-bad dataset – components are
described in paper.

• Uncategorized datasets – no ground truth
about the maliciousness of contained pages is
available.

49

Evaluation – False Positive Rates

50

URLs Tested # Reported
Malicious URLs

False Positives

Known-Good Subset 3,508 0 0

Crawling Set 115,706 137 15

The majority of the false positives uncovered on the crawling set were due to
more different ActiveX controls being used on a benign page than had been
seen in the training session, according to the authors.

Evaluation – False Negative Rates

Dataset Samples
(#)

JSAND
FN

ClamAV
FN

PhoneyC
FN

Capture-HPC
FN

Spam Trap 257 1 (0.3%) 243 (94.5%) 225 (87.5%) 0 (0.0%)

SQL Injection 23 0 (0.0%) 19 (82.6%) 17 (73.9%) -

Malware Forum 202 1 (0.4%) 152 (75.2%) 85 (42.1%) -

Wepawet-bad 341 0 (0.0%) 250 (73.3%) 248 (72.7%) 31 (9.1%)

Total 823 2 (0.2%) 664 (80.6%) 575 (69.9%) 31 (5.2%)

51

The authors compared JSAND’s false negative rate to that of three other
tools that utilize different detection approaches.

Capture-HPC was not used for the SQL injection and Malware forum
datasets because the exploit binaries were hosted at sites that are no longer
reachable.

Evaluation

• Capture-HPC and JSAND were run side-by-side
on the 16,894 URLs in the Wepawet-uncat
dataset.

• Capture-HPC found 285 confirmed malicious
URLs, of which JSAND missed 25.

• JSAND flagged 8,714 URLs as anomalous
(identifying 1 or more exploit for 762 of those
URLs). Capture-HPC did not flag 8,454 of
those.

52

Performance

• JSAND analyzed the Wepawet-bad dataset
(341 samples) in 2:22 hours vs. Capture-HPC’s
time of 2:59 hours.

• Parallelization to three computers reduced the
time to 1 hour.

• This still seems pretty uncomfortably long for
341 samples.

53

Conclusion

• It’s quite likely that the Google Safe Browsing
API is based on a blacklist of suspected
phishing and malware pages built using the
technology described in the first paper.

• Anomalous behavior discovery from the
second paper could be used or borrowed from
in the heuristical analysis from the first paper.

• Ultimately these techniques seem promising,
if somewhat difficult to operate quickly.

54

http://code.google.com/apis/safebrowsing/
http://code.google.com/apis/safebrowsing/

