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Background 

• A large number of transactions take place over 
the Internet 

– Shopping 

– Communication 

– Browse News 

• It’s likely that you perform some of these 
transactions as well. 
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Scenario (Setup) 

• You like to read articles about the latest 
developments in gadgetry. 

• Many blogs allows readers to comment on 
articles, and typically these comments will 
load along with the page when you load up 
the article. 

• You also use IE 6 because you don’t believe in 
newfangled browsers (but you still like 
gadgets). 
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Scenario (Security Breaches) 

• A fairly popular tech blog known as 
tech.gadget is mostly funded by advertising 
and pulls ads from a common online 
advertising agency. 

• A hacker pays the agency to distribute an ad 
containing malicious code to test a package of 
exploits on viewers’ computers. 
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Scenario (Download Stage) 

• It so happens that your IE 6 has one of the 
targeted vulnerabilities. 

• You search for tech news, find a cool article at 
tech.gadget, and then read it, ignoring the 
hacker’s ad. 

• However, one of the ad’s exploits kicks in and 
a piece of malware is transferred to your 
machine. 
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Scenario (Finale) 

• Now there is a piece of malicious software 
running on your computer. 

• This could be: 

– a keylogger 

– a bot 

– a browsing history tracker 

• Obviously, this is not good. 
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So What? 

• None of us are more than a few minor version 
numbers behind (and almost certainly not 
running IE 6), so why is this a big deal? 

• Many people don’t understand why security 
updates are important. Why update if I don’t 
see something broken? 

7 



The Update Problem 

As you can see from these 
charts, some people simply do 
not update their browsers. 
 
Why not? 
• Ignorance – not everyone is 
tech savvy enough to know 
that security patches are a 
good thing. 
• Difficulty – for a large 
company, a major version 
upgrade can be quite the IT 
hassle. 
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Slow Update Adoption 
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What to Do? 

• There’s a lot of people out there with 
potentially vulnerable browsers. 

• It would be nice if there were a way to identify 
sites that could potentially infect you with 
malicious software before you just blindly click 
on them from search results, without having 
to update your browser. 

• It turns out that some people from Google 
have been looking into just that. 
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THE GHOST IN THE BROWSER 
Analysis of Web-based Malware 

Niels Provos, Dean McNamee, Panayiotis Mavrommatis, Ke Wang, 
Nagendra Modadugu 
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The Goal 

• Google has an extensive repository of pages 
on the web. 

• Utilizing these resources, the researchers are 
trying to identify which of those pages could 
potentially be malicious. 
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Size of the Google Index 

Go here for more information on how the index size was estimated. 
Note that Google does not appear to officially release the size of 
their search index any more. 
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Potential Problems 

• Impact of false positives – if a legitimate 
website is marked as a potential distributor of 
malware, that could be bad for its business. 

• Sheer number of pages on the web. 

– Netcraft reports in their April 2010 survey that 
they received responses from 205,368,103 sites. 

– The Google index has somewhere around 15 
billion pages. 
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Dealing with the Web 

• There are a lot of pages on the web. How can 
this number be pared down to something that 
is reasonable to examine? 

• The Google researchers apply simple 
heuristics to each page to determine whether 
a page attempts to exploit a web browser. 

• Pages that test positive under these heuristics 
are then examined more closely. 
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Detection Architecture Diagram 
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MapReduce Description 

• A programming model that operates in two 
stages. 

– Map stage: a sequence of key-value pairs is read 
as input and a sequence of intermediate key-value 
pairs is output 

– Reduce stage: All intermediate values associated 
with the same intermediate key are merged and 
output as a final sequence of key-value pairs. 
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MapReduce Process in this Paper 

<mal.ici.ous.com, mal.ici.ous.com/totallynotsuspect.cgi?q=345> 
<mal.ici.ous.com, mal.ici.ous.com/v2.php?a=10> 
<cnn.com/news/tech/index.htm, mal.ici.ous.com/v2.php?a=14> 
<engadget.com, mal.ici.ous.com/totallynotsuspect.cgi?q=100> 
... and so on... 

Map Stage 

Reduce Stage 

<mal.ici.ous.com, mal.ici.ous.com/totallynotsuspect.cgi?q=345> 
<cnn.com/news/tech/index.htm, mal.ici.ous.com/v2.php?a=14> 
<engadget.com, mal.ici.ous.com/totallynotsuspect.cgi?q=100> 
... and so on... 
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Map Stage 

• The Map stage is run on all crawled web 
pages. 

• The URL of each analyzed web page is a key. 

• The HTML in each page is parsed; links in 
known suspicious elements such as iframes 
pointing to malware-distributing hosts are 
stored as values. 
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Map Stage (cont’d.) 

• Another heuristic used to identify suspicious 
links at this stage relies on detection of 
abnormalities such as heavy obfuscation. 

• On completion, this stage yields an 
intermediate list of URLs as keys and all links 
from that page to possibly malicious URLs as 
values. 
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<engadget.com, mal.ici.ous.com/totallynotsuspect.cgi?q=100> 
... and so on... 
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Reduce Stage 

• The Reduce stage is run on all the 
intermediate key-value pairs. 

• It is very simple – all but the first intermediate 
value is discarded for each intermediate key. 

• On completion, this stage yields a list of 
potentially malicious URLs and an example of 
a possibly suspect link from each of them. 
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MapReduce Results 

• This MapReduce process pares the number of 
web pages to process from several billion to a 
few million. 

• The number of web pages to process can in 
fact be reduced farther, using a second 
MapReduce step to sample by site instead of 
by page. 
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Detection Architecture Diagram 
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Exploit Confirmation 

• Even after the MapReduce step, there are still 
several million pages with possible links to 
exploits. 

• How to confirm whether these pages actually 
cause a web browser exploit? 
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Exploit Testing 

• Each URL is fed to a copy of Internet Explorer 
running in a virtual machine. 

• All HTTP fetches and state changes in the VM 
can be tracked. These state changes include: 

– New process startup 

– Registry changes 

– File system changes 
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Potential Exploit Scoring 

• Each recorded component is scored to provide 
an overall score. 
– Example: each HTTP fetch is classified using a 

number of different anti-virus engines. 

• Each individual score is then summed up to 
form an overall score for the analysis 

• If the majority of URLs on a site are malicious, 
some or all of the site might be labeled as 
harmful when shown as a search result. 
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Evaluation – Throughput 
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Evaluation - Throughput 

• This analysis originally processed 50,000 
unique URLs per day. 
– Optimizations increased this rate to 300,000 per 

day. 

• In-depth analysis of 4.5 million URLs at the 
time of writing. 
– 450,000 engaged in drive-by-downloads. 

– 700,000 more seemed malicious but with lower 
confidence. 
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Content Control and Dependencies 

• How can you lose control of content on your 
page? 

– Web server insecurity – if an adversary can take 
control of the server, they can modify its content, 
such as its templating system 

– User-contributed content – poor sanitization of 
input can lead to injected code. The researchers 
discovered several bulletin boards that allowed 
the insertion of arbitrary HTML. 

30 



Content Control and Dependencies 

– Advertising – “sub-letting” trust issues 

• Here‘s a real-life example: 

• A banner advertisement from a large American advertising 
company was delivered in the form of JS that generated 
more JS. 

• This new JS chained through another large American agency 
and then a smaller one that apparently used geo-targeting. 

• The geo-targeted ad resulted in an iframe pointing to a 
Russian advertising company. 

• That iframe requested encrypted JS from an IP address that 
attempted several exploits, some of which were successful. 

• Trust is not transitive. 
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Content Control and Dependencies 

• Web masters sometimes include external JS or 
iframes to provide additional functionality. 

• The paper gives an example of a page that linked to a free 
statistics counter. 

• The counter worked benignly for about four years. 

• Then the linked JS was changed to instead try to exploit 
every visitor to pages linking to the supposed counter. 

• Another trust issue – even if you trust the original content 
provider, you have no control over what happens to the 
external code you link to. 
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Exploitation Mechanisms 

• Sometimes malicious JS targets specific 
vulnerabilities. 

– Microsoft Data Access Component vulnerability 
(required only about 20 lines of JS to reliably 
launch an arbitrary binary on a vulnerable 
installation) 

– Microsoft WebViewFolderIcon vulnerability 
exploited using JS heap spraying techniques 

33 



Exploitation Mechanisms 

• Exploiting one vulnerability is limiting. Multi-
exploit kits are typically more effective. 

• An example is the MPack kit produced by 
Russian crackers. 
– Commercial software ($500 - $1000) 

– Technical support 

– Software vulnerability updates 

– Customized attacks to victim browsers, including 
IE, Firefox, and Opera. 

– More fascinating details here. 
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http://www.symantec.com/connect/blogs/mpack-packed-full-badness


Exploitation Mechanisms 

• What if the user has no discoverable 
exploitable vulnerabilities? 

• Fall back on good old social engineering and 
promise the user content they might find 
intriguing. 

• Example: Offer the user copyrighted video 
content for “free” and then claim a “codec” is 
needed to correctly play the video. 
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Trends in Malware 

• In the arms race between malware generation 
and detection, some trends have emerged. 

• Exploit code is often obfuscated 

– The paper gives an example of a VBScript exploit 
that was escaped twice using JavaScript escaping. 

– Even some reputable web pages serve obfuscated 
JavaScript. 
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Trends in Malware 

• The authors also attempted to classify the 
different types of malware that use the web to 
deploy. The stated goal was to discover 
whether web-based malware was being used 
to construct botnets. 

• Their  automated analysis seems very rough, 
with only “Trojan,” “Adware,” and 
“Unknown/Obfuscated” categories. 
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Trends in Malware 
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Trends in Malware 

• Most of the examined exploits were hosted on 
third-party servers and not on the 
compromised web site. 

• Occasionally, all requests to the legitimate site 
were redirected to a malicious site. 

• Many exploits are hosted on multiple servers 
as well, to minimize the chance of failure. 

• A few of the malicious URLs pointed to rapidly 
changing malware binaries. 
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Detection and Analysis of Drive-by-
Download Attacks and Malicious 

JavaScript Code 

Marco Cova, Christopher Kruegel, 
Giovanni Vigna 
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Summary 

• The problem is that malicious JavaScript code 
can be very difficult to identify due to the 
dynamic nature of JavaScript. 

• The paper presents a solution built around 
anomaly detection with emulation. 

• Machine-learning techniques are used to 
establish profiles of “normal” JavaScript code. 
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Detection Technique 

• Detection is based on finding anomalies which 
include: 
– Redirection chains. 
– Differences in served JS based on reported browser 

version. 
– Differences in the JS served to the same IP for 

consecutive identical requests. 
– Environment preparation (including heap spraying) 
– Exploitation patterns (such as odd plugin-loading 

behavior) 
– Extensive deobfuscation (one feature to look for is an 

abnormal amount of dynamic code execution) 
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Simple Code Obfuscation Example 

• This is a very 
basic example of 
code 
obfuscation. 

• Real obfuscated 
code is often 
polymorphic and 
dynamically 
generated. 

var a="Hello World!"; 

function MsgBox(msg) 

{ 

    alert(msg+"\n"+a); 

} 

MsgBox("OK"); 

eval(function(p,a,c,k,e,d){e=functio

n(c){return 

c};if(!''.replace(/^/,String)){while

(c--

){d[c]=k[c]||c}k=[function(e){return 

d[e]}];e=function(){return'\\w+'};c=

1};while(c--

){if(k[c]){p=p.replace(new 

RegExp('\\b'+e(c)+'\\b','g'),k[c])}}

return p}('4 0="3 5!";9 

2(1){6(1+"\\7"+0)}2("8");',10,10,'a|

msg|MsgBox|Hello|var|World|alert|n|O

K|function'.split('|'),0,{})) 
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Use of Models 

• Models are constructs designed to assign a 
probability score to a feature value, given 
some established model of “normality.” 

– Example: suppose there are 70 instantiated 
plugins/ActiveX controls on a page. The “normal” 
number has been established to be roughly 4-5, so 
the model assigns a very low probability that 70 is 
a normal value. 
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Use of Models 

• Models operate in either: 

– Detection mode. 

– Training mode. 

• There are a few different types of models 
utilized – paper has much more detailed 
information. 

• Overall anomaly score assigned as weighted 
sum of all model scores. 

45 



Use of Emulation 

• Emulation is designed to reveal the true behavior 
of the JavaScript code. 

• HtmlUnit – Java-based framework for testing web 
applications. 
– Implements standard browser functionality (except 

visual page rendering). 

– Models HTML documents. 

– Supports JavaScript using Mozilla Rhino interpreter. 

• HtmlUnit and Rhino were instrumented to extract 
the features used in the anomaly detection. 
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Diagram of Analysis Method 
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Evaluation of JSAND System 

• Proposal was implemented as a system called 
JSAND. 

• System can classify exploits used by a 
malicious page. 

• System can use classification information to 
generate exploit signatures for other tools. 

48 



Evaluation - Datasets 

• Known-good dataset – used to train models, 
determine anomaly thresholds, and compute 
false positives. 

• Known-bad dataset – components are 
described in paper. 

• Uncategorized datasets – no ground truth 
about the maliciousness of contained pages is 
available. 
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Evaluation – False Positive Rates 
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# URLs Tested # Reported 
Malicious URLs 

# False Positives 

Known-Good Subset 3,508 0 0 

Crawling Set 115,706 137 15 

The majority of the false positives uncovered on the crawling set were due to 
more different ActiveX controls being used on a benign page than had been 
seen in the training session, according to the authors. 



Evaluation – False Negative Rates 

Dataset Samples 
(#) 

JSAND 
FN 

ClamAV 
FN 

PhoneyC 
FN 

Capture-HPC 
FN 

Spam Trap 257 1 (0.3%) 243 (94.5%) 225 (87.5%) 0 (0.0%) 

SQL Injection 23 0 (0.0%) 19 (82.6%) 17 (73.9%) - 

Malware Forum 202 1 (0.4%) 152 (75.2%) 85 (42.1%) - 

Wepawet-bad 341 0 (0.0%) 250 (73.3%) 248 (72.7%) 31 (9.1%) 

Total 823 2 (0.2%) 664 (80.6%) 575 (69.9%) 31 (5.2%) 
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The authors compared JSAND’s false negative rate to that of three other 
tools that utilize different detection approaches. 

Capture-HPC was not used for the SQL injection and Malware forum 
datasets because the exploit binaries were hosted at sites that are no longer 
reachable. 



Evaluation 

• Capture-HPC and JSAND were run side-by-side 
on the 16,894 URLs in the Wepawet-uncat 
dataset. 

• Capture-HPC found 285 confirmed malicious 
URLs, of which JSAND missed 25. 

• JSAND flagged 8,714 URLs as anomalous 
(identifying 1 or more exploit for 762 of those 
URLs). Capture-HPC did not flag 8,454 of 
those. 
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Performance 

• JSAND analyzed the Wepawet-bad dataset 
(341 samples) in 2:22 hours vs. Capture-HPC’s  
time of 2:59 hours. 

• Parallelization to three computers reduced the 
time to 1 hour. 

• This still seems pretty uncomfortably long for 
341 samples. 
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Conclusion 

• It’s quite likely that the Google Safe Browsing 
API is based on a blacklist of suspected 
phishing and malware pages built using the 
technology described in the first paper. 

• Anomalous behavior discovery from the 
second paper could be used or borrowed from 
in the heuristical analysis from the first paper. 

• Ultimately these techniques seem promising, 
if somewhat difficult to operate quickly. 
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