
StackGuard: A Historical
Perspective

Crispin Cowan, PhD

Senior PM, Windows Core Security

Microsoft

Aleph One Fires The Opening Shot

• “Smashing the Stack for Fun and Profit”
– Aleph One (AKA Elias Levy), Phrack 49, August 1996

• It is a cook book for how to create exploits for
“stack smashing” attacks

• Prior to this paper, buffer overflow attacks were
known, but not widely exploited
– “Validate all input parameters” is a security principle

going back to the 1960s

• After this paper, attacks became rampant
– Stack smashing vulns are massively common, easy to

discover, and easy to exploit

What is a “Stack Smash”?

• Buffer overflow:
– Program accepts string input,

placing it in a buffer

– Program fails to correctly
check the length of the input

– Attacker gets to overwrite
adjacent state, corrupting it

• Stack Smash:
– Special case of a buffer

overflow that corrupts the
activation record

What is a “Stack Smash”?

• Return address
– Overflow changes it to point

somewhere else

• “Shell Code”
– Point to exploit code that

was encoded as CPU
instructions in the attacker’s
string

– That code does
exec(“/bin/sh”)

hence “shell code”

Why Are We So Vulnerable To
Something So Trivial?

• Why are we so vulnerable to something so
trivial?

– Because C chose to represent strings as null
terminated instead of (base, bound) tuples

– Because strings grow up and stacks grow down

– Because we use Von Neumann architectures that
store code and data in the same memory

• But these things are hard to change … mostly

http://en.wikipedia.org/wiki/Von_Neumann_architecture

Non-Executable Memory

• Try to move away from Von Neumann
architecture by making key regions of memory be
non-executable

• Problem: x86 memory architecture does not
distinguish between “readable” and “executable”
per page

– Only memory segments support this distinction

– Most other CPU memory systems support non-
executable pages, but they also mostly don’t matter

Non-Executable Stack, 1997

• “Solar Designer” introduces the Linux non-
executable stack patch

– Fun with x86 segmentation registers maps the stack
differently from the heap and static data

– Results in a non-executable stack

• Effective against naïve Stack Smash attacks

• Bypassable:

– Inject your shell code into the heap (still executable)

– Point return address at your shell code in the heap

StackGuard, 1998

• Compile in integrity checks
for activation records

– Insert a “canary word” (after
the Welsh miner’s canary)

• If the canary word is
damaged, then your stack is
corrupted

– Instead of jumping to attacker
code, abort the program

– Log the intrusion attempt

http://en.wikipedia.org/wiki/Miner's_canary

StackGuard Prototype

• Written in a few days by one intern

• Less than 100 lines of code patch to GCC

– Helped a lot that the GCC function preamble and
function post amble code generator routines were
nicely isolated

• First canary was hardcoded 0xDEADBEEF

– Easily spoofable, but worked for proof of concept

Canary Spoof Resistance

• The random canary:
– Pull a random integer from the OS /dev/random at process

startup time
– Simple in concept, but in practice it is very painful to make

reading from /dev/random work while still inside crt0.o
– Made it work, but motivated us to seek something simpler

• “Terminator” canary:
– CR, LF, 00, -1: the symbols that terminate various string library

functions
– Rationale: will cause all the standard string mashers to

terminate while trying to write the canary cannot spoof the
canary and successfully write beyond it

– Still vulnerable to attacks against poorly used memcpy() code,
but buffer overflows thought to be rare

XOR Random Canary

• 1999, “Emsi” creates the frame pointer attack
– Frame pointer stored below the canary corruptible

– Change FP to point to a fake activation record constructed
on the heap

– Function return code will believe FP, interpret the fake
activation record, and jump to shell code

– Bypasses both Terminator and Random Canaries

• XOR Random Canary
– XOR the correct return address with the random canary

– Integrity check must match both the random number, and
the correct return address

Other Stack Smashing Defenses

• StackShield:
– Copied valid return addresses to safe memory, check them

on function return
– Implemented as a modified assembler requires hacking

your makefiles

• Libsafe: armored variants of the “big 7” standard string
library functions
– Library code does a plausability check on the parameters;

ensure that they are not pointing back up the stack at an
activation record

– Advantage: no recompile necessary
– Disadvantage: no protection for hand-coded string

handling, or anything other than the big-7

Other Stack Smashing Defenses

• StackGhost: uses SPARC CPU hardware to get OS
in the loop to armor the stack

• Hardware: numerous papers proposing “slightly”
modified CPU hardware to protect against stack
smashing
– Typically protection about as good as StackGuard

– Advantage: don’t have to re-compile code

– Disadvantage: do have to re-compile code to run on
non-existent hardware, which tends to limit adoption

StackGuard Derivatives: ProPolice

• IBM Research Japan
– Also a modified GCC
– Copied StackGuard defense exactly, and

acknowledged it
– Enhanced with variable sorting: sort buffers (arrays)

up to the top of local variables, so that they cannot
overflow other important values

• Used a different code generator technique
– More compatible with the newer code generator

architecture in GCC 2 and GCC 3
– Ultimately ProPolice is what is adopted into GCC and

became the –fstack_protector feature

StackGuard, uh …
Concurrent Innovation

• Microsoft Visual Studio: /gs

– Uses exactly the StackGuard defense

– Introduced in 2003; people who were there say that it
was independently innovated

– Object lesson: patent your stuff, even if you intend to
GPL it!

• Even though introduced 5 years after StackGuard,
Microsoft beat the Linux/FOSS community into
mainstream adoption by several years

All the World Is Not A Stack

• As stack protection matured, attackers do
what they always do: move to the next soft
target

– Heap overflows

– Pointer corruption

– Printf format string vulnerabilities

– Integer “underflows”

– …

Brute Force Defense:
Buffer Bounds Checking

• Jones&Kelly built a GCC that had full array
bounds checking

– Associate a data structure with every buffer and
check every read and write against the buffer’s
legitimate size

– Absolutely memory safe

– Costly: between 3X and 30X slowdown

Fun With Memory Defense:
DEP and ASLR

• DEP: Data Execution Protection

• ASLR: Address Space Layout Randomization

• Microsoft introduced in XPSP2

• Linux introduced bits and pieces in various
places:

– PAX Project also had NX (Like DEP) and ASLR

– Red Hat ExecShield

DEP and ASLR Are Critically
Interdependent

• ASLR only: not enough bits of randomization
– Attacker can inject their code surrounded by a “NOP sled”; long

sequence of NOPs followed by shell code
– Only have to jump to somewhere in the NOP sled to succeed
– Add DEP: cannot inject code into data areas

• DEP only: there is lots of code in memory already that can
do the attacker’s job
– Originally called the “return into LibC” attack; the attacker

changes the return pointer to point to some code in LibC that
will run exec(“/bin/sh”)

– Add ASLR: becomes hard for the attacker to hit that delicate
target, because they cannot surround it with a NOP sled

PointGuard

• Cowan et al, USENIX Security 2003

• Hashed pointers; the dual of ASLR

• Pointers in memory: can be corrupted via
overflow

• Pointers in registers: not overflowable

• PointGuard:
– Store pointers encrypted in memory

– To dereference a pointer, decrypt it as you load it into
a register

CPU

Memory
Pointer
0x1234

Data

1. Fetch Pointer Value

0x1234

2. Access data referenced by pointer

Normal Pointer Dereference

CPU

Memory
Corrupted Pointer
0x1234
0x1340

Data

1. Fetch Pointer Value

0x1234

2. Access attacker’s data referenced
 by corrupted pointer

0x1340

Malicious
Data

Normal Pointer Dereference Under
Attack

CPU

Memory
Encrypted Pointer
0x7239

Data

1. Fetch Pointer Value

0x1234

2. Access data referenced by pointer

Pointer Decryption

0x1234

PointGuard Pointer Dereference

CPU

Memory
Corrupted Pointer
0x7239
0x1340

Data

1. Fetch Pointer Value

0x1234

Pointer Decryption

0x9786

0x1340

Malicious
Data

2. Access random data referenced
 by decryption of corrupted pointer

PointGuard Pointer Dereference Under
Attack

3. Segfault & Crash

PointGuard Problems

• PointGuard had excellent performance
• Compatibility not so good: each PG process had its own

random cookie
– Interfacing PG code with non-PG libraries
– Interfacing PG code with the kernel
– Bizzarre casting: real code declares a union of two structs

• One variant has a field that is a void *
• Other variant has that same field as an int
• The code expects a NULL pointer to show up as an int value == 0,

which is not true under PG

• PointGuard abandoned due to insurmountable compat
issues
– ASLR and DEP can handle this

Buffer Overflows Today

• Heap Spray: fill heap with many many copies of
the NOP sled/shell code, to defeat ASLR defenses

• JIT Spray: Heap Spray applied to the storage for
JIT code, so as to bypass ASLR and DEP

• Wise but useless: whatever code shared an
address space with the JIT buffer should have
been written in a type safe language

• Research opportunity: find a way to defend
against JIT Spray that allows people to share JIT
address space with crap code

http://en.wikipedia.org/wiki/Heap_spraying'
http://www.semantiscope.com/research/BHDC2010/BHDC-2010-Slides-v2.pdf

Conclusion

• This is going to keep happening until people
adopt type safe languages: Java, C#, Python, Ruby
…
– Not C++: it has the safety of C, and the performance

of SmallTalk

• But go ahead, keep writing code in insecure
languages
– It is job security for us security nerds

• Questions?
– Crispin@microsoft.com

mailto:Crispin@microsoft.com

