
cse504 class presentation

• LCLint (PLDI’96 paper)

• Splint (IEEE’02 paper)

• Prefix (Intrinsa SP&E’00 paper)

1

jaeyeon.jung@intel.com

04/07/2010

static detection of dynamic

memory errors

part I

2

the problem

• memory errors are hard to detect at

compile-time

• observations

– many bugs result from invalid assumptions

about the results of functions and the

values of parameters and global variables.

– these bugs are platform independent.

3

memory errors

• misuses of null pointers

• lack of memory allocation or

deallocation

• uses of undefined storage

• unexpected aliasing

4

sample.c

extern char *gname;

void setName (char *pname) {

gname = pname;

}

5

sample.c

extern char *gname;

void setName (char *pname) {

gname = pname;

}

1. must not be a sole ref.

6

sample.c

extern char *gname;

void setName (char *pname) {

gname = pname;

}

2. gname and pname are aliased.

7

sample.c

extern char *gname;

void setName (char *pname) {

gname = pname;

}

3. gname may not be dereferenced

 if pname is a null pointer.

8

sample.c

extern char *gname;

void setName (char *pname) {

gname = pname;

}

4. gname may not be dereferenced

 as a rvalue unless pname pointed to defined storage.

9

the approach

• make assumptions explicit with

annotations

– function interfaces, variables, types

• extend LCLint to statically detect the

errors

– LCLint became secure programming Lint

http://www.splint.org/

10

annotations

• syntactic comments

– e.g., /* @null@ */

• used in

– type declaration

– function parameter or return value

declarations

– global and static variable declarations

11

annotations --- null pointers

extern char *gname;

void setName (/*@null@*/ char *pname) {

gname = pname;

}

1

2

3

4

5

sample.c:5: function returns with non-null global gname

referencing null storage.

 sample.c:4: storage gname may become null.
12

annotations --- null pointers

extern char *gname;

extern /*@truenull@*/

 isNull (/*@null@*/ char *x);

void setName (/*@null@*/ char

*pname) {

If (!isNull(pname)) {

 gname = pname;

}

}

13

annotations --- definition

• out: referenced storage need not be
defined

• in/partial/undef: referenced storage is
completely/partially/not defined

• reldef: value assumed to be defined
when it is used, but need not be
assigned to defined storage

14

annotations --- allocation

extern /*@only@*/ char *gname;

void setName (/*@temp@*/ char *pname) {

gname = pname;

}

1

2

3

4

5

1. memory leak

2. gname will become a dead pointer if the caller

deallocates the actual parameter
15

annotations --- aliasing

• unique: parameter aliasing

• returned: a reference to the parameter
may be returned

16

evaluation --- toy program

• employee database program (1K LoC)

• adding annotations is an iterative

process

– 13 only, 1 out, 1 null

• found three bugs

– null pointers, allocation, aliasing

17

evaluation --- toy program

18

evaluation --- LCLint

• 100K lines of code

• < 4 minutes to check

• adding all annotations required a few

days over the course of a few weeks by

one person

• revealed limitations of strict annotations

– e.g., handling an error condition

19

summary

• the annotations improve

– static checking

– maintaining and developing code

• a combination of static checking and

run-time checking is promising to

producing reliable code.

20

Improving security

using extensible lightweight

 static analysis

part II

21

the problem

• the techniques for avoiding security

vulnerabilities are not codified into the

software development process

• C is difficult to secure

– unsafe functions

– confusing APIs

22

the solution

• Splint: a lightweight static analysis tool

for ANSI C

– detects stack and heap-based buffer

overflow vulnerabilities

– support user-defined checks

• constrain the values of attributes at interface

points

• specify how attributes change

23

the challenges

• false positive & false negatives

• tradeoff between precision and

scalability

– limited to data flow analysis within

procedure bodies

– merges possible paths at branch points

– use heuristics to analyze loop

24

example --- buffer overflow

analysis
• requires, ensures

• maxSet

– highest index that can be safely written to

• maxRead

– highest index that can be safely read

• char buffer[100];

– ensures maxSet(buffer) == 99

25

SecurityFocus.com Example

void func(char *str){

 char buffer[256];
strncat(buffer, str, sizeof(buffer) - 1);
return;

}

char *strncat (char *s1, char *s2, size_t n)

 /*@requires maxSet(s1)

>=maxRead(s1) + n@*/

uninitialized array

Source: Secure Programming working document,
SecurityFocus.com

http://www.cs.virginia.edu/evans/talks/usenix.ppt
26

strncat.c:4:21: Possible out-of-bounds store:
 strncat(buffer, str, sizeof((buffer)) - 1);
 Unable to resolve constraint:
 requires maxRead (buffer @ strncat.c:4:29) <= 0
 needed to satisfy precondition:
 requires maxSet (buffer @ strncat.c:4:29)
 >= maxRead (buffer @ strncat.c:4:29) + 255
 derived from strncat precondition:
 requires maxSet (<parameter 1>)
 >= maxRead (<parameter1>) + <parameter 3>

Warning Reported
char * strncat (char *s1, char *s2, size_t n)
/*@requires maxSet(s1) >= maxRead(s1) + n @*/

char buffer[256];
strncat(buffer, str, sizeof(buffer) - 1);

http://www.cs.virginia.edu/evans/talks/usenix.ppt
27

example --- taint analysis

http://www.cs.virginia.edu/~evans/pubs/ieeesoftware.pdf

28

example --- taint analysis

char *strcat

 (/*@returned@*/ char *s1,

 char *s2)

 /*@ensures s1:taintedness =

 s1:taintedness | s2.taintedness@*/

annotated declarations define taint propagation at the

interface for standard library functions
29

evaluation --- wu-ftpd

• 20K LoC

• < 4 seconds to check the code on a slow

(1.2GHz) machine

• found a few known bugs using the taint

analysis

• 101 warnings after adding 66 annotations

– 76 false positives

• external assumptions, arithmetic limitations, alias

analysis, flow control, loop heuristics

30

int acl_getlimit(char *class, char *msgpathbuf)

{
struct aclmember *entry = NULL;

while (getaclentry("limit", &entry)) {

 …

strcpy(msgpathbuf, entry->arg[3]);

LCLint reports a possible buffer overflow for

strcpy(msgpathbuf, entry->arg[3]); LCLint reports an error at a call site of acl_getlimit

wu-ftpd vulnerablity

/*@requires maxSet(msgpathbuf) >= 1023 @*/

strncpy(msgpathbuf, entry->arg[3], 1023);
msgpathbuf[1023] = ‘\0’;
strncpy(msgpathbuf, entry->arg[3], 199);
msgpathbuf[199] = ‘\0’;

/*@requires maxSet(msgpathbuf) >= 199 @*/

 int access_ok(int msgcode) {

 char class[1024], msgfile[200];
 int limit;

 …

 limit = acl_getlimit(class, msgfile);

http://www.cs.virginia.edu/evans/talks/usenix.ppt
31

summary

• static analysis is promising but

– limited to finding problems that manifest as

inconsistencies between the code and

assumptions documented in annotations

– annotating legacy code is laborious

• static analysis helps codifying

knowledge into tools not to avoid

making same mistakes

32

A static analyzer for finding

dynamic programming errors

part III

33

the problem

• many bugs are caused by the

interaction of multiple functions and may

be revealed only in unusual cases

– compilers, Lint are limited to intra-

procedural checks

– annotation checkers require too much work

– debugging tools incur performance

overhead

34

the design goals

• practical

– effectively check C/C++ programs

– leverage information automatically derived

from the program text

• analysis limited to achievable paths

• actionable

– automatic characterization of defects

35

PREfix’s key concept

• simulate functions using VM

– achievable paths

• automatically generate a function’s

model

• bottom-up analysis

36

PREfix

• parse the source code into abstract syntax
tree

• run topological sort for simulating functions
from the leaf

• load existing models for relevant functions

• simulate functions
– simulate achievable paths

– per-path simulation

37

per-path simulation

• memory: exact values and predicates
– known exact value, initialized but unknown value,

uninitialized value

– dereference

• operations on memory
– setting, testing, assuming

• conditions, assumptions and choice points

• end-of-path analysis
– leak analysis

38

model -- deref

39

model -- deref

40

model generation

• record all the per-path memory state
– tests -> constraints

• save externally visible states
– parameters, return values and globals

• merge states
– for performance

– equivalent merging (e.g., one assumes x>0 and
the other assumes x<=0)

– no aggressive merging (e.g., [merge *p=5 and
*p=8 -> *p is initialized] caused accuracy issues

41

evaluation

OK performance on a slow machine

42

evaluation

false +s: 10% - 25% (Apache) 43

evaluation

the decrease in coverage as

more models are introduced

44

summary

• PREfix is a dynamic checker with

– adjustable thresholds on path coverage

– heuristics to manage paths to check

– efficient function models

• bugs found by PREfix

– caused by multi-function interactions

– off main code paths

– more found in yonger code

45

take-away

• LCLint (PLDI paper) & Splint (IEEE

paper)

– static analysis with annotations

– manual, iterative process but improves

maintaining and developing code

• Prefix (Intrinsa SP&E paper)

– dynamic checker with models and heuristics

– automatic, inter-procedural analysis, but may

produce lots of false positives

46

