cse504 class presentation

« LCLint (PLDI'96 paper)
« Splint (IEEE’02 paper)
* Prefix (Intrinsa SP&E’00 paper)

jaeyeon.jung@intel.com
04/07/2010

static detection of dynamic
memory errors

the problem

* memory errors are hard to detect at
compile-time
* Oobservations

— many bugs result from
about the results of functions and the
values of parameters and global variables.

— these bugs are platform independent.

Memory errors

misuses of null pointers

lack of memory allocation or
deallocation

uses of undefined storage
unexpected aliasing

sample.c

extern char *gname,;

void setName (char *pname) {
ghame = pname,;

}

sample.c

extern char *gname;

.

void setName (char *pname) {
ghame = pname,;

}

sample.c

extern char *gname;

void setName (char *pname) {
ghame = pname,;

}

sample.c

extern char *gname;

void setName (char *pname) {
ghame = pname,;

}

sample.c

extern char *gname;

void setName (char *pname) {
ghame = pname,;

}

the approach

* make assumptions explicit with
annotations

— function interfaces, variables, types

« extend LCLint to statically detect the
errors

— LCLint became secure programming Lint
http://www.splint.org/

10

annotations

* syntactic comments
—e.g., /* @null@ */
* used In

— type declaration

— function parameter or return value
declarations

— global and static variable declarations

11

o b~ W N P

annotations --- null pointers

extern char *gname;

void setName (F@null@*/ char *pname) {
ghame = pname,;

}

annotations --- null pointers

extern char *gname;

void setName (/*@null@*/ char
*pname) {

{

gname = pname;

}

13

annotations --- definition

» out: referenced storage need not be
defined

* In/partial/undef: referenced storage is
completely/partially/not defined

e reldef: value assumed to be defined
when it Is used, but need not be
assigned to defined storage

14

o b~ W N P

annotations --- allocation

extern /[*@only@*/ char *gname,;

void setName (F@temp@*/ char *pname) {
ghame = pname,;

}

annotations --- aliasing

* unique: parameter aliasing

* returned: a reference to the parameter
may be returned

16

evaluation --- toy program

* employee database program (1K LoC)

« adding annotations Is an iterative
process
— 13 only, 1 out, 1 null

 found three bugs
— null pointers, allocation, aliasing

17

evaluation --- toy program

Function Entrance

itypedef /*@nulle*/ struct list
;:r{ 14: if (1 != NULL)

3 /*@onlye*/ char *this; tru false
¢4 /*@nulle*//*@onlye*/ struct list *next;
} *list; NULL)

3 16: while (l-znext !=
&
7
&8

extern /*moute*//*monlye*/ void * true false

smalloc (size t);

9
1ovoid *
111ist _addh (/*etempe*/ list 1, 1-snext

12 /*@onlye*/ char *e) o

14 1if (1 != NULL)

]
[l
1}

15 1

16 while (l-=next != NULL)

17 { 21l: l-=»next = smalloc (...)
18 1l = 1-=next;

19 b *

20

21 l1--next = (list) 23: l-=next-=this
22 smalloc (sizeof (*1-snext));

23 l-=next-=this = e;

24 }

25}

Function Exit

evaluation --- LCLInt

100K lines of code
< 4 minutes to check

adding all annotations required a few
days over the course of a few weeks by
one person

revealed limitations of strict annotations
— e.g., handling an error condition

19

summary

* the annotations improve
— static checking
— maintaining and developing code

* a combination of static checking and
run-time checking is promising to
producing reliable code.

20

Improving security
using extensible lightweight
static analysis

21

the problem

 the techniques for avoiding security
vulnerabilities are not codified into the
software development process

 C is difficult to secure
— unsafe functions
— confusing APIs

22

the solution

« Splint: a lightweight static analysis tool
for ANSI C

— detects stack and heap-based buffer
overflow vulnerabillities

— support user-defined checks

» constrain the values of attributes at interface
points

 specify how attributes change

23

the challenges

* false positive & false negatives

* tradeoff between precision and
scalability

— limited to data flow analysis within
procedure bodies

— merges possible paths at branch points
— use heuristics to analyze loop

24

example --- buffer overflow
analysis

requires, ensures
maxSet
— highest index that can be safely written to

maxRead
— highest index that can be safely read

char buffer[100];
— ensures maxSet(buffer) == 99

25

SecurityFocus.com Example
char *strncat (char *s1, char *s2, size_t n)
[*@requires maxSet(sl)
>=maxRead(sl) + n@%*/

void func(char *str){

char buffer[256];
strncat(buf,f{str, sizeof(buffer) - 1);

return; -
) uninitialized array

Source: Secure Programming working document,
SecurityFocus.com

26
http://www.cs.virginia.edu/evans/talks/usenix.ppt

Warning Reported

char * strncat (char *s1, char *s2, size_t n)
/*@requires maxSet(sl) >= maxRead(sl) + n @*/
char buffer[256];

strncat(buffer, str, sizeof(buffer) - 1);

strncat.c:4:21: Possible out-of-bounds store:
strncat(buffer, str, sizeof((buffer)) - 1);

Unable to resolve constraint:

requires maxRead (buffer @ strncat.c:4:29) <=0
needed to satisfy precondition:

requires maxSet (buffer @ strncat.c:4:29)

>= maxRead (buffer @ strncat.c:4:29) + 255

derived from strncat precondition:

requires maxSet (<parameter 1>)

>= maxRead (<parameterl>) + <parameter 3>

27
http://www.cs.virginia.edu/evans/talks/usenix.ppt

example --- taint analysis

attribute taintedness
context reference char *
oneof untainted, tainted
annotations
tainted reference ==> tainted
untainted reference ==> untainted

transfers

tainted as untainted ==> error “Possibly tainted storage used as untainted.”
merge

tainted + untainted ==> tainted
defaults

reference ==> tainted

literal ==> untainted

null ==>untainted
end

http://www.cs.virginia.edu/~evans/pubs/ieeesoftware.pdf

28

example --- taint analysis

char *strcat
(/*@returned@*/ char *sl1,

char *s2)

/*Q@ensures sl:taintedness =

sl:taintedness | s2.taintedness@*/

evaluation --- wu-ftpd

20K LoC

< 4 seconds to check the code on a slow
(1.2GHz) machine

found a few known bugs using the taint
analysis

101 warnings after adding 66 annotations

— 76 false positives

 external assumptions, arithmetic limitations, alias
analysis, flow control, loop heuristics

30

wu-ftpd vulnerablity

int access_ok(int msgcode) {
char class[1024], msgfile[200];
int limit;

limit = acl_getlimit(class, msgfile);

31
http://www.cs.virginia.edu/evans/talks/usenix.ppt

summary

* static analysis Is promising but

— limited to finding problems that manifest as
Inconsistencies between the code and
assumptions documented in annotations

— annotating legacy code is laborious

» static analysis helps codifying
knowledge into tools not to avoid
making same mistakes

32

A static analyzer for finding
dynamic programming errors

33

the problem

* many bugs are caused by the
iInteraction of multiple functions and may
be revealed only in unusual cases

— compilers, Lint are limited to intra-
procedural checks

— annotation checkers require too much work

— debugging tools incur performance
overhead

34

the design goals

* practical
— effectively check C/C++ programs

— leverage information automatically derived
from the program text

 analysis limited to achievable paths

e actionable
— automatic characterization of defects

35

PRETfix's key concept

 simulate functions using VM
— achievable paths

» automatically generate a function’s
model

* bottom-up analysis

36

PRETfix

parse the source code into abstract syntax
tree

run topological sort for simulating functions
from the leaf

load existing models for relevant functions

simulate functions
— simulate achievable paths
— per-path simulation

37

per-path simulation

memory: exact values and predicates

— known exact value, initialized but unknown value,
uninitialized value

— dereference

operations on memory
— setting, testing, assuming
conditions, assumptions and choice points

end-of-path analysis
— leak analysis

38

= T) I i S B S

model -- deref

int deref(int *p)
{
i1f (p==NULL)
recurn NULL:;
return *p;

39

L= LT 1 I PR %]

model -- deref

(deref

int deref(int *p)

: (param p)

if (p==NULL) (alternate I‘E!tuII‘l_ﬂ
ceturn rms (guard peq p NULL)
} (constraint memory initialized p)
(result peq return NULL)
)
(alternate return X

(guard pne p NULL)
(constraint memory initialized p)
(constraint memory valid pointer p)
(constraint memory initialized *p)

(result peq return *p)

)

40

model generation

* record all the per-path memory state
— tests -> constraints

« save externally visible states
— parameters, return values and globals

* merge states
— for performance

— equivalent merging (e.g., one assumes x>0 and
the other assumes x<=0)

— No aggressive merging (e.g., [merge *p=5 and
*pP=8 -> *p Is initialized] caused accuracy issues

41

evaluation

Table 1. Performance on sample public domain software.

PREfix
Number of Numberof PREfix parse simulation
Program Language files lines time time
Mozilla C++ 603 540613 2h 8 h
28 min 27 min
Apache C 69 48 393 6 min 9 min

GDI Demo C 9 2655 ls 15

evaluation

Table II. Warnings reported in sample public domain software.

Warning Mozilla Apache GDI
Using uninitialized memory 26.14% 455 695k
Dereferencing uninitialized pointer 1.73% 0 0
Dereferencing NULL pointer 58.93% 504 15%
Dereferencing invalid pointer 0 5% 0
Dereferencing pointer to freed memory 1.98% 0 0
Leaking memory 9.75% 0 0
Leaking a resource (such as a file) 0.09% 0 84
Returning pointer to local stack variable 0.52% 0 0
Returning pointer to freed memory 0.09% 0 0
Resource in invalid state 0 0 B
Illegal value passed to function 0.43% 0 0
Divide by zero 0.35% 0 0
Total number of warnings 1159 20 13

evaluation

Table I11. Relationships between available Models, coverage, execution time and defects reported.

Execution Total Using NULL
Model set time Statement Branch Predicate warning uninit pointer Memory
(minutes) coverage coverage coverage count memory deref leak
None 12 90.1% B7.8% 83.95% 15 2 11 0
System 13 88.9% 86.3% 82.15% 25 4] 12 7
System & auto 23 73.1% T73.1% 68 6% 248 110 24 124

44

summary

* PREfix Is a dynamic checker with
— adjustable thresholds on path coverage
— heuristics to manage paths to check
— efficient function models

* bugs found by PREfix
— caused by multi-function interactions
— off main code paths
— more found in yonger code

45

take-away

* LCLint (PLDI paper) & Splint (IEEE
paper)
— static analysis with annotations

— manual, iterative process but improves
maintaining and developing code

* Prefix (Intrinsa SP&E paper)
— dynamic checker with models and heuristics

— automatic, inter-procedural analysis, but may
produce lots of false positives 46

