
cse504 class presentation 

• LCLint (PLDI’96 paper) 

• Splint (IEEE’02 paper) 

• Prefix (Intrinsa SP&E’00 paper)  
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static detection of dynamic 

memory errors 

part I 
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the problem 

• memory errors are hard to detect at 

compile-time 

• observations 

– many bugs result from invalid assumptions 

about the results of functions and the 

values of parameters and global variables. 

– these bugs are platform independent. 
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memory errors 

• misuses of null pointers 

• lack of memory allocation or 

deallocation 

• uses of undefined storage 

• unexpected aliasing 
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sample.c 

extern char *gname; 

 

void setName (char *pname) { 

gname = pname; 

} 
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sample.c 

extern char *gname; 

 

void setName (char *pname) { 

gname = pname; 

} 

1. must not be a sole ref. 
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sample.c 

extern char *gname; 

 

void setName (char *pname) { 

gname = pname; 

} 

2. gname and pname are aliased. 
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sample.c 

extern char *gname; 

 

void setName (char *pname) { 

gname = pname; 

} 

3. gname may not be dereferenced 

 if pname is a null pointer. 
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sample.c 

extern char *gname; 

 

void setName (char *pname) { 

gname = pname; 

} 

4. gname may not be dereferenced 

 as a rvalue unless pname pointed to defined storage. 
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the approach 

• make assumptions explicit with 

annotations 

– function interfaces, variables, types 

• extend LCLint to statically detect the 

errors 

– LCLint became secure programming Lint 

http://www.splint.org/ 
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annotations 

• syntactic comments 

– e.g., /* @null@ */ 

• used in 

– type declaration 

– function parameter or return value 

declarations 

– global and static variable declarations 
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annotations --- null pointers 

extern char *gname; 

 

void setName (/*@null@*/ char *pname) { 

gname = pname; 

} 
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sample.c:5: function returns with non-null global gname 

referencing null storage. 

 sample.c:4: storage gname may become null. 
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annotations --- null pointers 

extern char *gname; 

extern /*@truenull@*/ 

 isNull (/*@null@*/ char *x); 

void setName (/*@null@*/ char 

*pname) { 

If (!isNull(pname)) { 

 gname = pname; 

} 

} 
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annotations --- definition 

• out: referenced storage need not be 
defined 

• in/partial/undef: referenced storage is 
completely/partially/not defined 

• reldef: value assumed to be defined 
when it is used, but need not be 
assigned to defined storage 
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annotations --- allocation 

extern /*@only@*/ char *gname; 

 

void setName (/*@temp@*/ char *pname) { 

gname = pname; 

} 
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1. memory leak 

2. gname will become a dead pointer if the caller 

deallocates the actual parameter 
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annotations --- aliasing 

• unique: parameter aliasing 

• returned: a reference to the parameter 
may be returned 
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evaluation --- toy program 

• employee database program (1K LoC) 

• adding annotations is an iterative 

process 

– 13 only, 1 out, 1 null 

• found three bugs 

– null pointers, allocation, aliasing 
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evaluation --- toy program 

18 



evaluation --- LCLint 

• 100K lines of code 

• < 4 minutes to check 

• adding all annotations required a few 

days over the course of a few weeks by 

one person 

• revealed limitations of strict annotations  

– e.g., handling an error condition 
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summary 

• the annotations improve 

– static checking 

– maintaining and developing code 

• a combination of static checking and 

run-time checking is promising to 

producing reliable code. 
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Improving security  

using extensible lightweight 

 static analysis 

part II 
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the problem 

• the techniques for avoiding security 

vulnerabilities are not codified into the 

software development process 

• C is difficult to secure 

– unsafe functions 

– confusing APIs 
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the solution 

• Splint: a lightweight static analysis tool 

for ANSI C 

– detects stack and heap-based buffer 

overflow vulnerabilities 

– support user-defined checks  

• constrain the values of attributes at interface 

points  

• specify how attributes change 
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the challenges 

• false positive & false negatives 

• tradeoff between precision and 

scalability 

– limited to data flow analysis within 

procedure bodies 

– merges possible paths at branch points 

– use heuristics to analyze loop 
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example --- buffer overflow 

analysis 
• requires, ensures 

• maxSet 

– highest index that can be safely written to 

• maxRead 

– highest index that can be safely read 

• char buffer[100]; 

– ensures maxSet(buffer) == 99 
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SecurityFocus.com Example 

void func(char *str){                                

 char buffer[256];                            
strncat(buffer, str, sizeof(buffer) - 1); 
return;  

} 

char *strncat (char *s1, char *s2, size_t n) 

  /*@requires maxSet(s1)  

>=maxRead(s1) + n@*/ 

uninitialized array 

Source: Secure Programming working document, 
SecurityFocus.com 

http://www.cs.virginia.edu/evans/talks/usenix.ppt 
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strncat.c:4:21: Possible out-of-bounds store:  
      strncat(buffer, str, sizeof((buffer)) - 1);  
  Unable to resolve constraint: 
    requires maxRead (buffer @ strncat.c:4:29)  <= 0  
  needed to satisfy precondition: 
    requires maxSet (buffer @ strncat.c:4:29)   
                >= maxRead (buffer @ strncat.c:4:29) + 255 
  derived from strncat precondition:  
    requires maxSet (<parameter 1>)  
                >=  maxRead (<parameter1>) + <parameter 3> 
 

Warning Reported 
char *  strncat (char *s1, char *s2, size_t n)  
/*@requires maxSet(s1) >= maxRead(s1) + n @*/  

char buffer[256]; 
strncat(buffer, str, sizeof(buffer) - 1);  

http://www.cs.virginia.edu/evans/talks/usenix.ppt 
27 



example --- taint analysis 

http://www.cs.virginia.edu/~evans/pubs/ieeesoftware.pdf 

28 



example --- taint analysis 

char *strcat 

 (/*@returned@*/ char *s1,  

  char *s2) 

 /*@ensures s1:taintedness =  

    s1:taintedness | s2.taintedness@*/ 

annotated declarations define taint propagation at the 

interface for standard library functions 
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evaluation --- wu-ftpd 

• 20K LoC 

• < 4 seconds to check the code on a slow 

(1.2GHz) machine 

• found a few known bugs using the taint 

analysis 

• 101 warnings after adding 66 annotations 

– 76 false positives 

• external assumptions, arithmetic limitations, alias 

analysis, flow control, loop heuristics 
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int acl_getlimit(char *class, char *msgpathbuf) 

 

{ 
struct aclmember *entry = NULL;  

  

while (getaclentry("limit", &entry)) { 

   … 

strcpy(msgpathbuf, entry->arg[3]);  

LCLint reports a possible buffer overflow for  

strcpy(msgpathbuf, entry->arg[3]);  LCLint reports an error at a call site of acl_getlimit  

wu-ftpd vulnerablity 

/*@requires maxSet(msgpathbuf) >= 1023 @*/ 

strncpy(msgpathbuf, entry->arg[3], 1023); 
msgpathbuf[1023] = ‘\0’;  
strncpy(msgpathbuf, entry->arg[3], 199); 
msgpathbuf[199] = ‘\0’;  

/*@requires maxSet(msgpathbuf) >= 199  @*/ 

 

 int access_ok( int msgcode) { 

    char class[1024], msgfile[200]; 
    int limit; 
 
     …  
  
    limit = acl_getlimit(class, msgfile); 

http://www.cs.virginia.edu/evans/talks/usenix.ppt 
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summary 

• static analysis is promising but 

– limited to finding problems that manifest as 

inconsistencies between the code and 

assumptions documented in annotations 

– annotating legacy code is laborious 

• static analysis helps codifying 

knowledge into tools not to avoid 

making same mistakes 
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A static analyzer for finding 

dynamic programming errors 

part III 
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the problem 

• many bugs are caused by the 

interaction of multiple functions and may 

be revealed only in unusual cases 

– compilers, Lint are limited to intra-

procedural checks 

– annotation checkers require too much work 

– debugging tools incur performance 

overhead 
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the design goals 

• practical  

– effectively check C/C++ programs 

– leverage information automatically derived 

from the program text 

• analysis limited to achievable paths 

• actionable 

– automatic characterization of defects 
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PREfix’s key concept 

• simulate functions using VM 

– achievable paths 

• automatically generate a function’s 

model 

• bottom-up analysis 
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PREfix 

• parse the source code into abstract syntax 
tree 

• run topological sort for simulating functions 
from the leaf 

• load existing models for relevant functions 

• simulate functions 
– simulate achievable paths 

– per-path simulation 
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per-path simulation 

• memory: exact values and predicates 
– known exact value, initialized but unknown value, 

uninitialized value 

– dereference 

• operations on memory 
– setting, testing, assuming 

• conditions, assumptions and choice points 

• end-of-path analysis 
– leak analysis 
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model -- deref 
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model -- deref 
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model generation 

• record all the per-path memory state 
– tests -> constraints 

• save externally visible states  
– parameters, return values and globals 

• merge states 
– for performance 

– equivalent merging (e.g., one assumes x>0 and 
the other assumes x<=0) 

– no aggressive merging (e.g., [merge *p=5 and 
*p=8 -> *p is initialized] caused accuracy issues 
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evaluation 

OK performance on a slow machine 
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evaluation 

false +s: 10% - 25% (Apache) 43 



evaluation 

the decrease in coverage as 

more models are introduced 
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summary 

• PREfix is a dynamic checker with 

– adjustable thresholds on path coverage 

– heuristics to manage paths to check 

– efficient function models 

• bugs found by PREfix 

– caused by multi-function interactions 

– off main code paths 

– more found in yonger code 
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take-away 

• LCLint (PLDI paper) & Splint (IEEE 

paper) 

– static analysis with annotations  

– manual, iterative process but improves 

maintaining and developing code  

• Prefix (Intrinsa SP&E paper)  

– dynamic checker with models and heuristics 

– automatic, inter-procedural analysis, but may 

produce lots of false positives  

 

46 


