
Securing Web Applications

Static and Dynamic Information Flow Tracking

Jason Ganzhorn

4/12/2010



The Issues

 SQL Injection

 Cross-site Scripting (XSS)

 Other problems, such as HTTP response splitting…

 Common Theme

 Unchecked (or “tainted”) data from user reaches security-

sensitive operations



Quick Vulnerability Review



What is Cross-Site Scripting?

 Cross-site scripting, in a nutshell, refers to a 

malicious practice in which code from an evil server 

is injected into a legitimate page and then run by 

hapless victims who view the page.

 There are complex variants on this theme, but we 

won‟t be discussing that, since this isn‟t a 

presentation on XSS.



HTTP Response Splitting

 The basic idea behind HTTP response splitting is 

that the attacker attempts to divide an HTTP header 

such that the target interprets the response as two.

 Involves an insertion of user-supplied data into the 

HTTP header.

 If this insertion is successful, the attacker completely 

controls the content of the second header, which can 

be used to perform a cache poisoning attack (among 

other attacks).



SQL Injection

 Basic idea: input from user is incorporated into query 

on database.

 If the input is unchecked, a malicious attacker can 

perform nefarious acts such as examining the 

database structure, reading or writing to database 

tables, or completely discarding tables.



SQL Injection in the wild

From a recent (Jan. 14, 2010) security advisory for a product 
called Zenoss Core (http://www.zenoss.com):

getJSONEventsInfo contains multiple SQL Injection 
vulnerabilities due to improperly sanitized user provided 
input. The following URL parameters are injectable: severity, 
state, filter, offset, and count.

A proof of concept request might look like this: 

/zport/dmd/Events/getJSONEventsInfo?severity
=1&state=1&filter=& offset=0&count=60 into 
outfile "/tmp/z“

Obtained from:
http://www.ngenuity.org/wordpress/2010/01/14/ngenuity-
2010-001-zenoss-getjsoneventsinfo-sql-injection/

http://www.zenoss.com/
http://www.ngenuity.org/wordpress/2010/01/14/ngenuity-2010-001-zenoss-getjsoneventsinfo-sql-injection/
http://www.ngenuity.org/wordpress/2010/01/14/ngenuity-2010-001-zenoss-getjsoneventsinfo-sql-injection/
http://www.ngenuity.org/wordpress/2010/01/14/ngenuity-2010-001-zenoss-getjsoneventsinfo-sql-injection/
http://www.ngenuity.org/wordpress/2010/01/14/ngenuity-2010-001-zenoss-getjsoneventsinfo-sql-injection/
http://www.ngenuity.org/wordpress/2010/01/14/ngenuity-2010-001-zenoss-getjsoneventsinfo-sql-injection/
http://www.ngenuity.org/wordpress/2010/01/14/ngenuity-2010-001-zenoss-getjsoneventsinfo-sql-injection/
http://www.ngenuity.org/wordpress/2010/01/14/ngenuity-2010-001-zenoss-getjsoneventsinfo-sql-injection/
http://www.ngenuity.org/wordpress/2010/01/14/ngenuity-2010-001-zenoss-getjsoneventsinfo-sql-injection/
http://www.ngenuity.org/wordpress/2010/01/14/ngenuity-2010-001-zenoss-getjsoneventsinfo-sql-injection/
http://www.ngenuity.org/wordpress/2010/01/14/ngenuity-2010-001-zenoss-getjsoneventsinfo-sql-injection/
http://www.ngenuity.org/wordpress/2010/01/14/ngenuity-2010-001-zenoss-getjsoneventsinfo-sql-injection/
http://www.ngenuity.org/wordpress/2010/01/14/ngenuity-2010-001-zenoss-getjsoneventsinfo-sql-injection/
http://www.ngenuity.org/wordpress/2010/01/14/ngenuity-2010-001-zenoss-getjsoneventsinfo-sql-injection/


SQL Injection



Tainted Input

 The root of many of these problems is that user-

specified (or “tainted”) data is passed into critical 

code without being checked.

 Why isn‟t it being checked?

 Sometimes the source of the data and the “sink” 

(e.g. a query construction) are widely separated and 

the connection is not obvious.



Tainted Input (cont’d)

 Consider this example:

You are programming a networked application, and 

you decide to use the AwesomeNetwork™ library to 

handle your database connections.

However, you are short on time and the 

documentation for the library is lacking, so you 

assume that it provides SQL sanitization.

Voila, you have introduced a SQL injection 

vulnerability.



How Serious Is It, Really?

 According to the WhiteHat Website Security 

Statistics Report released in fall 2009, approximately 

64% of the 1,364 scanned websites have at least 

one serious vulnerability.

 There is an average of 6.5 severe unresolved 

vulnerabilities per website.

 http://www.whitehatsec.com/home/resource/stats.ht

ml

 Further interesting reading:

http://www.symantec.com/business/theme.jsp?them

eid=threatreport

http://www.whitehatsec.com/home/resource/stats.html
http://www.whitehatsec.com/home/resource/stats.html
http://www.symantec.com/business/theme.jsp?themeid=threatreport
http://www.symantec.com/business/theme.jsp?themeid=threatreport


Is There a Solution?

 One solution is to adopt the mindset that user data 

cannot be trusted and should be sanitized whenever 

you are passing it to a sink.

 You are still probably going to miss some subtle 

cases due to lengthy code paths.

 Wouldn‟t it be nice if there was an automated way to 

check for common vulnerability patterns?



Program Query Language

Securing Web Applications with Static and Dynamic 

Information Flow Tracking



One Possible Solution

 PQL – Program Query Language

 Basic Idea

 Represent a class of information flow as a pattern, or 

specification.

 Use static and dynamic analysis to identify matches 

against a specification.

 Allow program to recover from errors gracefully and 

defend against security breaches.

 Make this as simple as possible for the programmer.



PQL System Architecture

Question

PQL Query

Program
instrumenter static analyzer

PQL Engine

Instrumented

Program

Optimized

Instrumented

Program

Static

Results



Programs and PQL Queries

Question

PQL Query

Program
instrumenter static analyzer

PQL Engine

Instrumented

Program

Optimized

Instrumented

Program

Static

Results



Execution Trace Example

 Here is an extremely simple example of an SQL injection:
HttpServletRequest req = /* ... */;

java.sql.Connection conn = /* ... */;

String q = req.getParameter(“QUERY”);

conn.execute(q);

 The corresponding abstract execution trace:
 CALL o1.getParameter(o2)

 RET o2

 CALL o3.execute(o2)

 RET o4



Another Execution Trace

 Another simple SQL injection example:
String read() {

HttpServletRequest req = /* ... */;

return req.getParameter(“QUERY”);

}

/* ... */

java.sql.Connection conn = /* ... */;

conn.execute(read());

 The corresponding abstract execution trace:
CALL read()

CALL o1.getParameter(o2)

RET o3
RET o3
CALL o4.execute(o3)

RET o5



Trace Similarities

 Note how the traces are similar:

1 CALL o1.getParameter(o2)

2 RET o3

3 CALL o4.execute(o3)

4 RET o5

1 CALL read()

2 CALL o1.getParameter(o2)

3 RET o3

4 RET o3

5 CALL o4.execute(o3)

6 RET o5

 PQL can be used to construct queries to look for 

patterns like these.



Constructing the Specification

 The pattern, specified in PQL:
query main()

uses String x;

matches {

x = HttpServletRequest.getParameter(_);

Connection.execute(x);

}

 The specification is simple, and works for non-

adjacent lines of code

 Not complete, however, as it does not match against 

code that executes a string derived from a 

parameter.



Things Get More Complicated

 Need to handle derived strings as in this case:
HttpServletRequest req = /* ... */;

n = req.getParameter(“NAME”);

p = req.getParameter(“PASSWORD”);

conn.execute(

“SELECT * FROM logins WHERE name=” + 

n +

“ AND passwd=” + 

p

);

 The PQL specification will have to be more 

complicated.



New PQL Query, Part 1

 The sub-query to check whether one string is 

derived from another:
query derived (Object x)

uses Object temp;

returns Object d;

matches {

{ temp.append(x); d := derived(temp); }

| { temp = x.toString(); d := derived(temp); }

| { d := x; }

}



New PQL Query, Part 2

 The new main query:
query main()

uses String x, final;

matches {

x = HttpServletRequest.getParameter(_);

| x = HttpServletRequest.getHeader(_);

final := derived(x);

Connection.execute(final);

}

 The new query is a bit more complex, but it does 

match quite a few more instances of an SQL 

injection.



Where Are We Right Now?

Question

PQL Query

Program
instrumenter static analyzer

PQL Engine

Instrumented

Program

Optimized

Instrumented

Program

Static

Results



Benefits So Far

 Difficult for programmers to do analysis (either they 

don‟t like it or they don‟t know it).

 However, they are familiar with the program code.

 Analysis specialists are good with analysis, but they 

don‟t know the specific program code.

 Analysts can use PQL to generate generic 

specifications to catch security flaws.



Building More Robust Applications

 So far we‟ve seen PQL queries used to detect 

vulnerabilities in essentially a static fashion.

 PQL can be used to integrate a specialized query 

matcher into the executable.

 A match can trigger special code designed to 

sanitize possibly unsafe input.



Graceful Match Handling with PQL

 Here is an example of how to trigger a function on a 

match in PQL:
query main()

uses String x, final;

matches {

x = HttpServletRequest.getParameter(_)

| x = HttpServletRequest.getHeader(_);

final := derived(x);

}

replaces Connection.execute(final) with

SQLUtil.safeExecute(x, final);



Going Deeper

 How does PQL do this dynamic analysis?

 A naïve dynamic analysis would translate the queries 

into state machines that would digest a program‟s full 

abstract execution trace:

Matches
Entire Abstract

Execution Trace

Query-Derived

State Machine

Query

Recognizer



More Efficient Dynamic Analysis

 Leverage results from static analysis

 Reduce number of objects that need to be checked

 Reduce number of points at which objects must be 

checked

instrumenter static analyzer

PQL Engine

Optimized

Instrumented

Program

A much more complete

description of how PQL‟s

dynamic analysis is done

can be found here.

http://research.microsoft.com/en-us/um/people/livshits/papers/ppt/oopsla05.pdf


Experimental Results – Error Catching

PQL queries targeting different vulnerabilities were run on several 

open-source applications. The paper has a description of what each 

of these applications are for.



Experimental Results – False Positives

 The false positive rate was very high at first.

 Improvements to the underlying mechanics of the 

static analysis greatly decreased the number of false 

positives (from about 380 to 0 false positives in 

roller).

 More details about the improvements can be found 

in the Usenix „05 presentation slides here.

http://research.microsoft.com/en-us/um/people/livshits/papers/ppt/usenixsec05.ppt


Experimental Results

PQL Dynamic Analysis Overhead

 Not a lot is mentioned about the overhead on a per-

application basis.

 In general, the number of program points that have 

to be checked appears to be indicative of overhead.



Related Work

 Static error-detection tools (SABER and WebSSARI

are examples)

 Event-based Analysis

 Other Program Query Languages like ASTLOG and 

Jquery

 Analysis Generators



Benefits of PQL

 Division of labor between analysts and 

programmers.

 Analysts can write PQL queries, programmers can run 

them and find bugs.

 The results indicate that it does help track down 

security bugs.

 The overhead of the dynamic analysis and protection 

is manageable enough that it can be run in real time.

 However… Humans still have to come up with the 

specifications. Wouldn‟t it be great if there were a 

way to infer specifications from program code?



MERLIN

Specification Inference for

Explicit Information Flow Problems



Overview of MERLIN

 Schematic of the MERLIN internal architecture:

 MERLIN can be integrated into the PQL architecture 

we have seen before.



MERLIN and the PQL Architecture

Question

PQL Query

Program
instrumenter static analyzer

PQL Engine

Instrumented

Program

Optimized

Instrumented

Program

Static

Results

MERLIN

Initial PQL

Query



MERLIN Structure

 Probabilistic inference is the core of MERLIN.

 Used to solve a set of probabilistic constraints to 
generate a specification

 Relies on assumptions about the nature of propagation 
graphs for most programs.

 Errors are rare.

 There are only a few sanitizers.

 The assumptions can lead to contradictory constraints 
inferred from different paths.

 Thus, constraints are parametrized with the probability of their 
satisfaction, based on a set of rules.

 The MERLIN paper has much more information and can be 
found here.

http://research.microsoft.com/en-us/um/people/livshits/papers/pdf/pldi09.pdf


MERLIN Structure

 Control flow inside MERLIN starts with a propagation 

graph.

 Informally, propagation graphs describe the flow of 

information between methods.

 Generated by static analysis of the code.

 Approximate.

 Pointer analysis is involved.

 Cycles in the propagation graph are removed for 

simplification.



Propagation Graph Example



MERLIN Structure

 The construction of the factor graph and the 

probabilistic inference that follows is fairly involved.

 Key points:

 Probabilistic constraints are generated from the 

propagation graph.

 The conjunction of the constraints can be used to 

construct a factor graph.

 The factor graph is used in the probabilistic inference to 

measure the odds that propagation graph nodes are 

sources, sanitizers, or sinks.



Experimental Results

 MERLIN is built as an add-on on top of CAT.NET, a 

publicly available static analysis tool.

 CAT.NET ships with an out-of-the-box specification, 

which MERLIN‟s results are compared to.

 10 different benchmark programs used in test.

 MERLIN specifications:
GOOD MAYBE BAD

167 127 87

 This yields a false-positive rate of approximately 

22%, which is quite decent.



Experimental Results (cont’d)

 When the good specifications generated by MERLIN 

were used to analyze the benchmark program code, 

fewer false positives were found.

 CAT.NET‟s false positive rate was 48% (43/89), 

MERLIN‟s false positive rate was 1% (3/342).

 MERLIN specifications also eliminated 13 former 

false positives.



Experimental Results (cont’d)

 CAT.NET + MERLIN Running Time

LoC # DLLs Time (s)

10,812 3 9.86

66,385 14 151.05

1,810,585 5 209.45

 The analysis seems to scale quite well, and the 

running times are fairly reasonable.



Summary

 PQL

 Language to write abstract specifications in.

 Allows for a division of labor between programmer and 

security analyst.

 Includes the tools necessary to perform static and 

dynamic analyses using these specifications.

 MERLIN

 Program to infer specifications automatically from 

program code.

 The combination of these two has a lot of potential.


