
Static Analysis for Memory Safety

Salvatore Guarnieri

sammyg@cs.washington.edu

Papers

• A First Step Towards Automated Detection of
Buffer Overrun Vulnerabilities

– Using static analysis and integer range analysis to
find buffer overflows

• A Practical Flow-Sensitive and Context Sensitive C
and C++ Memory Leak Detector

– Identifying memory ownership with static analysis

– Detecting double frees

1 CSE 504 -- 2010-04-14

A FIRST STEP TOWARDS AUTOMATED
DETECTION OF BUFFER OVERRUN
VULNERABILITIES
 2 CSE 504 -- 2010-04-14

Problem

char s[10];

strcpy(s, “Hello world!”);

• “Hello world!” is 12 + 1 characters

• s only holds 10 characters

• How do we detect or prevent this buffer
overflow?

3 CSE 504 -- 2010-04-14

“Modern” String Functions Don’t Fix
the Problem

• The strn*() calls behave dissimilarly

• Inconsistency makes it harder for the programmer to
remember how to use the “safe” primitives safely.

• strncpy() may leave the target buffer unterminated.

• strncat() and snprintf() always append a terminating
’\0’ byte

• strncpy() has performance implications: it zero-fills the
target buffer

• strncpy() and strncat() encourage off-by- one bugs (Null
character)

4 CSE 504 -- 2010-04-14

5 CSE 504 -- 2010-04-14

Insight

• We care about when we write past the end of
an array

a[i] = ...

if (i < sizeof(a)) {

 a[i] = ...

} else {error}

Should be

6 CSE 504 -- 2010-04-14

Basic Approach

• Treat C strings as an abstract data type
– Ignore everything but str* library functions

• Model buffers as a pair integer ranges
– l e n (a) is how far into the array the program

accesses

– a l l o c (a) is how large the array is

• If len(a) > alloc(a), there is a buffer
overrun

7 CSE 504 -- 2010-04-14

char *array = malloc(10);

array[1] = „h‟;

array[9] = „\0‟;

strcpy(array, “0123456789012”);

len(array) = alloc(array) =
8 CSE 504 -- 2010-04-14

char *array = malloc(10);

array[1] = „h‟;

array[9] = „\0‟;

strcpy(array, “0123456789012”);

len(array) = 0 alloc(array) = 10
9 CSE 504 -- 2010-04-14

char *array = malloc(10);

array[1] = „h‟;

array[9] = „\0‟;

strcpy(array, “0123456789012”);

len(array) = 2 alloc(array) = 10
10 CSE 504 -- 2010-04-14

char *array = malloc(10);

array[1] = „h‟;

array[9] = „\0‟;

strcpy(array, “0123456789012”);

len(array) = 10 alloc(array) = 10
11 CSE 504 -- 2010-04-14

char *array = malloc(10);

array[1] = „h‟;

array[9] = „\0‟;

strcpy(array, “0123456789012”);

len(array) = 14 alloc(array) = 10

len(dest) = len(src)

12 CSE 504 -- 2010-04-14

char *array = malloc(10);

array[1] = „h‟;

array[9] = „\0‟;

strcpy(array, “0123456789012”);

len(array) = 14 alloc(array) = 10

len(dest) = len(src)

OVERRUN

13 CSE 504 -- 2010-04-14

It’s not that simple

• What is len(array)? What is alloc(array)?

char *array = malloc(10);

if (k == 7) {

 strcpy(array, “hello”);

} else {

 free(array); array = malloc(3);

 strcpy(array, “world!”);

}

14 CSE 504 -- 2010-04-14

Use Ranges

• len(array) = [5, 6], alloc(array) = [3,10]

• 5>3 so we have a possible overrun

char *array = malloc(10);

if (k == 7) {

 strcpy(array, “hello”);

} else {

 free(array); array = malloc(3);

 strcpy(array, “world!”);

}

15 CSE 504 -- 2010-04-14

- - - - - MIN - MAX - len(a)

- - - MIN - - - - MAX alloc(a)

a b

c d

• If b <= c, no overrun
• If a > d, definite overrun
• Otherwise the ranges overlap and there
may be an overrun

16 CSE 504 -- 2010-04-14

Implementation Overview

17 CSE 504 -- 2010-04-14

Constraint Generation

s t r l e n (s t r) : : r e t u r n s l e n (s) – 1

L e n g t h o f t h e s t r i n g w i t h o u t i t s n u l l c h a r a c t e r

s t r n c a t (s , s u f f i x , n) : : a d d s g i v e n c o n s t r a i n t

l e n (s) – i n i t i a l l e n g t h o f s

m i n (l e n (s u f f i x) - 1 , n) – m i n o f l e n g t h o f s u f f i x

 w i t h o u t n u l l o r m a x l e n g t h o f n

p [n] = N U L L : : S e t s t h e n e w e f f e c t i v e l e n g t h o f p

T h e m i n d o e s n ‟ t r e a l l y m a k e s e n s e h e r e

18 CSE 504 -- 2010-04-14

Constraints

len = [5,6]

alloc = [3,10]

char *array = malloc(10);

if (k == 7) {

 strcpy(array, “hello”);

} else {

 free(array); array = malloc(3);

 strcpy(array, “world!”);

}

19 CSE 504 -- 2010-04-14

Limitations

• Double pointer
– Doesn’t fit in with their method

• Function pointers and union types
– Ignored

• Structs
– All structs of same “type” are aliased

– Struct members are treated as unique memory
addresses

• Flow Insensitive

20 CSE 504 -- 2010-04-14

Pointer Alias Limitations

char s[20], *p, t[10];

strcpy(s, “Hello”);

p = s + 5;

strcpy(p, “ world!”);

strcpy(t, s);

• What is len(s)?

21 CSE 504 -- 2010-04-14

Evaluation

• Run tool on programs from ~3kloc to ~35kloc

• Does it find new bugs?

• Does it find old bugs?

• What is the false positive rate?

• Are there any false negatives in practice?

• How long does it take to execute on CPU?

• How long does it take the user to use the tool?

22 CSE 504 -- 2010-04-14

Linux nettools

• Total 3.5kloc with another 3.5kloc in a support
library

• Recently hand audited

• Found several serious new buffer overruns

• They don’t talk about the bugs that they find

23 CSE 504 -- 2010-04-14

Sendmail

• ~35 kloc

• Found several minor bugs in latest revision

• Found many already discovered buffer
overruns in an old version

• 15 min to run for sendmail
– A few minutes to parse

– The rest for constraint generation

– A few seconds to solve constraint system

24 CSE 504 -- 2010-04-14

Sendmail findings

• An unchecked sprintf() from the results of a DNS lookup to a 200-
byte stack-resident buffer; exploitable from remote hosts with long
DNS records. (Fixed in sendmail 8.7.6.)

• An unchecked strcpy() to a 64-byte buffer when parsing stdin;
locally exploitable by “echo /canon aaaaa... | sendmail -bt”. (Fixed
in 8.7.6)

• An unchecked copy into a 512-byte buffer from stdin; try “echo
/parse aaaaa... | sendmail -bt”. (Fixed in 8.8.6.)

• An unchecked strcpy() to a (static) 514-byte buffer from a DNS
lookup; possibly remotely exploitable with long DNS records, but
the buffer doesn’t live on the stack, so the simplest attacks
probably wouldn’t work.

• Several places where the results of a NIS network query is blindly
copied into a fixed-size buffer on the stack; probably remotely
exploitable with long NIS records. (Fixed in 8.7.6 and 8.8.6.)

25 CSE 504 -- 2010-04-14

Human Experience

• 15 minutes to run…

• 44 warnings to investigate

• 4 real bugs

• Without tool you would have to investigate
695 potentially unsafe call sites

26 CSE 504 -- 2010-04-14

27 CSE 504 -- 2010-04-14

Improvements

Improved Analysis False alarms that
would be removed

Flow-sensitive 19/40 (47%)

Flow-sensitive with pointer analysis 25/40 (62%)

Flow and context sensitive with linear invariants 28/40 (70%)

Flow and context sensitive with linear invariants and
pointer analysis

38/40 (95%)

28 CSE 504 -- 2010-04-14

IDENTIFYING MEMORY
OWNERSHIP
 -- CLOUSEAU

29 CSE 504 -- 2010-04-14

From overruns to memory errors

• Memory Leaks
– Bloat

– Slow performance

– Crashes

• Dangling pointers/Double free
– Crashes

– Unexpected behavior

– Exploits

30 CSE 504 -- 2010-04-14

Double Free

31 CSE 504 -- 2010-04-14

After Normal Free

32 CSE 504 -- 2010-04-14

After Double Free

33 CSE 504 -- 2010-04-14

Alloc same size chunk again and get
same memory. Write 8 bytes

34 CSE 504 -- 2010-04-14

Motivating Example

35 CSE 504 -- 2010-04-14

Motivating Example

36 CSE 504 -- 2010-04-14

Motivating Example

37 CSE 504 -- 2010-04-14

Motivating Example

38 CSE 504 -- 2010-04-14

Ownership

• Introduce ownership to identify who is
allowed and responsible to free memory

• PROPERTY 1. There exists one and only one
owning pointer to every object allocated but
not deleted.

• PROPERTY 2. A delete operation can only be
applied to an owning pointer.

39 CSE 504 -- 2010-04-14

Key Design Choices

• Ownership is connected with the pointer
variable, not the object

• Ownership is tracked as 0 (non-owning) or 1
(owning)

– Partially to make solving the linear inequality
constraints easier

• Rank warnings with heuristics to minimize
impact of false positives

 40 CSE 504 -- 2010-04-14

System Overview

41 CSE 504 -- 2010-04-14

Flow Sensitive Analysis

u = n e w i n t ; / / u i s t h e o w n e r

z = u ;

d e l e t e z ; / / r i g h t b e f o r e t h i s l i n e z i s t h e o w n e r

• Order of instructions matters

• Analysis identifies line 2 as a possible
ownership transfer point

42 CSE 504 -- 2010-04-14

Constraint Solving Problem

u = n e w i n t ; / / u i s t h e o w n e r

z = u ;

d e l e t e z ; / / r i g h t b e f o r e t h i s l i n e z i s t h e o w n e r

• Constructors indicate ownership

• Deletion indicates desired/intended
ownership

• Generate all other constraints from
assignments

• Solve to identify owners

43 CSE 504 -- 2010-04-14

Evaluation

44 CSE 504 -- 2010-04-14

Evaluation -- C

85 bugs / 362 warnings = 23% true positives

45 CSE 504 -- 2010-04-14

Evaluation – C++

46 CSE 504 -- 2010-04-14

False Positives

• For C

• 85 errors for 362 warnings – 23% accuracy

• Many errors due to abnormal flow paths
– breaks, error conditions, etc.

• For C++

• 777 errors out of 1111 warnings – minor

• 49 errors out of 390 warnings – 12.5% accuracy
– Double deletes, incorrect destructors

47 CSE 504 -- 2010-04-14

END.

Flow Insensitive

• Instruction order doesn’t matter
c h a r * a ; a = m a l l o c (1 0) ; s t r c p y (a , “ h e l l o ”) ; a = m a l l o c (3) ;

Is analyzed the same as
c h a r * a ; a = m a l l o c (3) ; s t r c p y (a , “ h e l l o ”) ; a = m a l l o c (1 0) ;

49 CSE 504 -- 2010-04-14

Not Sound and Not Complete

• Lack of pointer treatment makes this unsound

– True positives can be missed

• Already an imprecise algorithm, so it is
incomplete

– False positives could be generated

• Evaluation will be very important

50 CSE 504 -- 2010-04-14

Sendmail findings

• An unchecked sprintf() from the results of a DNS lookup to a 200-byte stack-resident buffer;
exploitable from remote hosts with long DNS records. (Fixed in sendmail 8.7.6.)

• An unchecked sprintf() to a 5-byte buffer from a command-line argument (indirectly, via several
other variables); exploitable by local users with “sendmail -h65534 ...”. (Fixed in 8.7.6.)

• An unchecked strcpy() to a 64-byte buffer when parsing stdin; locally exploitable by “echo /canon
aaaaa... | sendmail -bt”. (Fixed in 8.7.6)

• An unchecked copy into a 512-byte buffer from stdin; try “echo /parse aaaaa... | sendmail -bt”.
(Fixed in 8.8.6.)

• An unchecked sprintf() to a 257-byte buffer from a filename; probably not easily exploitable. (Fixed
in 8.7.6.)

• A call to bcopy() could create an unterminated string, because the programmer forgot to explicitly
add a ’\0’; probably not exploitable. (Fixed by 8.8.6.)

• An unchecked strcpy() in a very frequently used utility function. (Fixed in 8.7.6.)
• An unchecked strcpy() to a (static) 514-byte buffer from a DNS lookup; possibly remotely

exploitable with long DNS records, but the buffer doesn’t live on the stack, so the simplest attacks
probably wouldn’t work.

• Also, there is at least one other place where the result of a DNS lookup is blindly copied into a static
fixed-size buffer. (Fixed in 8.7.6.)

• Several places where the results of a NIS network query is blindly copied into a fixed-size buffer on
the stack; probably remotely exploitable with long NIS records. (Fixed in 8.7.6 and 8.8.6.)

51 CSE 504 -- 2010-04-14

Double Free Exploit

• Freeing a memory block twice corrupts allocation
structures

• First free puts block back in list
• Second free mucks with forward and back pointers so

they point to the same block (the current block)
• Now future requests for blocks of that size will always

return the same block
• Write two memory addresses (8 bytes) to this chunk
• Make another request of the same block size, same

block will be used but since we just filled in data for
forward and back pointers, we can write to any
memory we want

52 CSE 504 -- 2010-04-14

cut

• Enforce ownership with a type system

– Infer types from code

– No user provided annotations

– Sound

– Minimizes false positives by prioritizing constraints

53 CSE 504 -- 2010-04-14

Definition of Escape

• Escaping violations refer to possible transfers of
ownership to pointers stored in structures, arrays
or indirectly accessed variables. While these
warnings tell the users which data structures in
the program may hold owning pointers, they
leave the user with much of the burden of
determining whether any of these pointers leak.
Users are not expected to examine the escaping
warnings, so we only examined the non-escaping
warnings to find program errors.

54 CSE 504 -- 2010-04-14

Minor Errors in C++

• First, many classes with owning member fields do not
have their own copy constructors and copy operators;
the default implementations are incorrect because
copying owning fields will create multiple owners to
the same object. Even if copy constructors and copy
operators are not used in the current code, they should
be properly defined in case they are used in the future.

• Second, 578 of the 864 interprocedural warnings
reported for SUIF2 are caused by leaks that occur just
before the program finds an assertion violation and
aborts. We have implemented a simple interprocedural
analysis that can catch these cases and suppress the
generation of such errors if desired.

55 CSE 504 -- 2010-04-14

