Static Analysis for Memory Safety

Salvatore Guarnieri

sammyg@cs.washington.edu

Papers

* A First Step Towards Automated Detection of
Buffer Overrun Vulnerabilities

— Using static analysis and integer range analysis to
find buffer overflows

A Practical Flow-Sensitive and Context Sensitive C
and C++ Memory Leak Detector

— Identifying memory ownership with static analysis
— Detecting double frees

CSE 504 -- 2010-04-14

A FIRST STEP TOWARDS AUTOMATED
DETECTION OF BUFFER OVERRUN
VULNERABILITIES

Problem

char s[10];
strcpy (s, “Hello world!”);

e “Hello world!” is 12 + 1 characters
e sonly holds 10 characters

e How do we detect or prevent this buffer
overflow?

“Modern” String Functions Don’t Fix
the Problem

The strn*() calls behave dissimilarly

Inconsistency makes it harder for the programmer to
remember how to use the “safe” primitives safely.

strncpy() may leave the target buffer unterminated.

strncat() and snprintf() always append a terminating
\O’ byte

strncpy() has performance implications: it zero-fills the
target buffer

strncpy() and strncat() encourage off-by- one bugs (Null
character)

25 5%

20 40%

15 0%

10 20%
alllllbe = 1, ahol
g = 0%, - l

1688 1990 1986 1988 1890 1982

Figure 1. Frequancy of buffer overrun vulnerabilitias, derived from a classification of CERT advisories. Tha
laft-hand chart shows, for @ach year, the total number of CERT-reported wulnerabilities and the number that
can be blamed primarily on buffer overruns. The righi-hand chart graphs the percentage of CERT-reporied
vulnarabilities that wera due o buffer overruns for @ach year.

CSE 504 -- 2010-04-14

Insight

 We care about when we write past the end of
an array

al[i] =

Should be

if (i < sizeof(a)) {

a[i] =

} else {error}

Basic Approach

* Treat C strings as an abstract data type
— lgnore everything but str* library functions

* Model buffers as a pair integer ranges

—1len (a) Iishow farinto the array the program
accesses

—alloc (a) ishow largethearrayis

e Iflen(a) > alloc(a), thereis a buffer
overrun

char *array =

malloc (10) ;

array|[1l]

\hl ;

array[9] = ‘\0’;

strcpy(array,

“0123456789012") ;

len(array) =| |alloc(array) =

\SE 5(, Ve W .V]
- - ZUTU U1

char *array = malloc(10);

array|[1] ‘h’

*\0"’ ;

array|[9]

strcpy(array, %“0123456789012") ;

len(array) = 0 || alloc(array) = 10

€SE504——2030=0d=44

char *array =

malloc (10) ;

array[1l]

\hl ;

array[9] = ‘\0’;

strcpy(array,

“0123456789012") ;

len(array) = grlnalloc(array) =10

ad0._0 4. 4
CIrC ZUTU U1

10

char *array = malloc(10);

array|[1] ‘h’ ;

array[9] ‘\0"’ ;

strcpy(array, %0123456789012") ;

len(array) = 10 | alloc(array) = 10

€S5E-504-=2040-04=14

11

char *array = malloc(10);

array|[1l] ‘h’ ;

len(dest) = len(src)

array[9] *\0’ ;

v

strcpy(array, %"0123456789012") ;

len(array) = 14 | alloc(array) = 10

€S5E-504-=2040-04=14

12

char *array =

malloc (10) ;

array|[1l]

\hl ;

len(dest) = len(src)

array|[9]

\\OI;

v

strcpy (array,

“0123456789012") ;

len(array) = 14 | alloc(array) = 10

ccr oA oV WV,

COL JU ZUTU U1

13

It’s not that simple

char *array = malloc(10);
if (k == 7) {
strcpy(array, “hello”);
} else {
free(array),; array = malloc(3);

strcpy(array, “world!”) ;

e What is len(array)? What is alloc(array)?

Use Ranges

char *array = malloc(10);
if (k == 7) {
strcpy(array, “hello”);
} else {
free(array),; array = malloc(3);

strcpy(array, “world!”) ;

* len(array) =[5, 6], alloc(array) = [3,10]
* 5>3 so we have a possible overrun

len(a) - - - - - MIN

MAX

alloc(a) |- - - MIN

MAX

C

* |f b <= ¢, no overrun
e |f a > d, definite overrun

* Otherwise the ranges overlap and there

may be an overrun

SIS

Implementation Overview

imeger consiraint

C parser comnstraing salver

generation

Figura 2. The architectura of the buffer ovarflow detection prototype.

CSE 504 -- 2010-04-14

WarLings

17

Constraint Generation

C code

Interpretation

char s[n];

n C alloc(s)

strlen(s)

len(s) — 1

strcpy(dst,src);
strncpy(dst,src,n);

— 1Ian1I -

len(src) C len(dst)
min(len(srec),n) C len(dst)
AClenle) A C alloc(s)

strlen(str)

Length of the

returns

string without

len(s) - 1

its null character

=5 F

‘H'TB! ¥ -m-; - ;-“;

strncat(s,suffix,n);

len(s) + min{lcn{suffix]_— 1,n) Clen(s) |

p = getenv(...);

[1,00] Clen(p), [1,00] C alloc(p)

1 _— 3 P 1

strncat(s,suffix,n)
len(s) -

min(len(suffix)-1,n)

adds given constraint

initial length of s

- min of length of suffix

— without mull or max length of nm |

NULL Sets the new effective length of p

pln] =

The min doesn’t really make sense here

CSE 504 -- 2010-04-14

18

Constraints

char *array = malloc(10) ; 10 € alloc(array)
if (k == 7) {

strcpy (array, “hello”); len("hello") C len(array)
} else {

free(array); array = malloc(3); 3 Calloc(array)

strecpy (array, “world!”); len("world!") C len(array)

len = [5,6]
alloc =[3,10]

Limitations

Double pointer
— Doesn’t fit in with their method

Function pointers and union types
— lgnored

Structs
— All structs of same “type” are aliased

— Struct members are treated as unique memory
addresses

Flow Insensitive

Pointer Alias Limitations

char s[20], *p, t[10];
strcpy (s, “Hello”);
p=s + 5;

strepy (p, “ world!'”);
strcpy(t, s);

e What is len(s)?

Evaluation

Run tool on programs from ~3kloc to ~35kloc
Does it find new bugs?

Does it find old bugs?

What is the false positive rate?

Are there any false negatives in practice?
How long does it take to execute on CPU?
How long does it take the user to use the tool?

Linux nettools

Total 3.5kloc with another 3.5kloc in a support
library

Recently hand audited

Found several serious new buffer overruns

They don’t talk about the bugs that they find

Sendmail

~35 kloc
Found several minor bugs in latest revision

Found many already discovered buffer
overruns in an old version

15 min to run for sendmail

— A few minutes to parse

— The rest for constraint generation

— A few seconds to solve constraint system

Sendmail findings

An unchecked sprintf() from the results of a DNS lookup to a 200-
byte stack-resident buffer; exploitable from remote hosts with long
DNS records. (Fixed in sendmail 8.7.6.)

An unchecked strcpy() to a 64-byte buffer when parsing stdin;
locally exploitable by “echo /canon aaaaa... | sendmail -bt”. (Fixed
in 8.7.6)

An unchecked copy into a 512-byte buffer from stdin; try “echo
/parse aaaaa... | sendmail -bt”. (Fixed in 8.8.6.)

An unchecked strcpy() to a (static) 514-byte buffer from a DNS
lookup; possibly remotely exploitable with long DNS records, but
the buffer doesn’t live on the stack, so the simplest attacks
probably wouldn’t work.

Several places where the results of a NIS network query is blindly
copied into a fixed-size buffer on the stack; probably remotely
exploitable with long NIS records. (Fixed in 8.7.6 and 8.8.6.)

Human Experience

15 minutes to run...
44 warnings to investigate
4 real bugs

Without tool you would have to investigate
695 potentially unsafe call sites

Warning: function pointera; analysis is unsafe... PP TaTzcor Trom
1.7duser D0.07syatem 0:01.9%elapsed 30%CPU < gtrlene-»e from.q paddr) + 1)
Probable buffer overflow in ‘dinamedcollect()’: break;
30..20 bytes allecated, -Infinity..257 bytegee®ed, [|3tccpyitrom, e->e_from.q paddr);
<«- slz(dfnamefcollect({})
<- len[dfnamefcoallect{}]} <- lenj@a@euename return)
Probable buffer overflow in "fromésavemaili)’:
512..512 bytes allocated, -Infinity..+Infinity bytes used.
<«- glz(frombsavemail(})
<— len(fromfsavemail(}) <- len{{unnamed field g paddr))
Slight chance of a buffer overflow in ‘actionferrbody()’:
7..36 bytes allocated, 7..36 bytes used.
“- slz{actionberrbody(}}

<= lenfactionferrbody(}) char *action;j
if (bitset[QBADADDR, g->g_flags})
=e= aotion = "failed";
elge if [bitsek[QDELAYED, g->g_flags))
Figura 5. Some example oultpul from the analysis tool. This axample is|p action = "delayed";

interasting cutput from an analysis run of sandmail 8.9.3.

CSE 504 -- 2010-04-14 27

Improvements

Improved Analysis False alarms that
would be removed

Flow-sensitive 19/40 (47%)
Flow-sensitive with pointer analysis 25/40 (62%)
Flow and context sensitive with linear invariants 28/40 (70%)
Flow and context sensitive with linear invariants and 38/40 (95%)

pointer analysis

CSE 504 -- 2010-04-14

28

IDENTIFYING MEMORY
OWNERSHIP
-- CLOUSEAU

From overruns to memory errors

* Memory Leaks
— Bloat
— Slow performance
— Crashes

* Dangling pointers/Double free
— Crashes
— Unexpected behavior
— Exploits

1ndex

s17e

chunls

Double Free

2 exactbins 4

6

65

sotted hins

127

16

24

32

312

576

640

3l
2

After Normal Free

OxA

CSE 504 -- 2010-04-14

32

After Double Free

OxA

CSE 504 -- 2010-04-14

33

Alloc same size chunk again and get
same memory. Write 8 bytes

OxA

0xDEAD

0xB

O0xBEEF

Motivating Example

EXaMPLE 3. Object invamants.

clas= Container 1
Elem *#;
public:
Container(Elem *slem] |
m = alen;

]

void set _e[Elen *mlem) 1
daelote @

@ = @lam!
]
Elanm *gat_a{] |
FeLUEni{&)
]
Elan *repl a@{Elem *alam) {
Elam *tmp = &
@ = @lamn:
FetuEn|tmp];
]

“Container|] |
delete @

]
I

CSE 504 -- 2010-04-14

35

Motivating Example

EXaMPLE 3. Object invamants.

Elem *#;
o puRlic:
Containsr(Elam *slem] |

m = alen;

]

void set _e[Elen *mlem) 1
daelote @

@ = @lam!
1
Elanm *gat_a{] |
FeLUEni{&)
|
Elan *repl a@{Elem *alam) {
Elam *tmp = &
@ = @lamn:
FetuEn|tmp];
1

“Container|] |
delete @

]
I

CSE 504 -- 2010-04-14

36

Motivating Example

EXaMPLE 3. Object invamants.

clas= Container |

Elem *#;

pubklic:

Container(Elem *elem] |
m o= glen;

'

L L T R
deleta @
@ = @lam!

]

Elanm *gat_a{] |
FeETUEni@)s

]

Elan *repl a@{Elem *alam) {
Elam *tmp = &
@ = @lamn:
FetuEn|tmp];

]

“Container|} |
delete @

]

I

CSE 504 -- 2010-04-14

37

Motivating Example

EXaMPLE 3. Object invamants.

clas= Container 1
Elem *#;
public:
Containsr(Elam *slem] |
m = alen;
t

yvalid set _e|Elemn *slem)
daelote @

@ = @lam!
]
Elanm *gat_a{] |
FeLUEni{&)
]
Elan *repl a@{Elem *alam) {
Elam *tmp = &
@ = @lamn:
FetuEn|tmp];

“Containaxr || |

delete &)

]
I

CSE 504 -- 2010-04-14

38

Ownership

* Introduce ownership to identify who is
allowed and responsible to free memory

* PROPERTY 1. There exists one and only one
owning pointer to every object allocated but

not deleted.

* PROPERTY 2. A delete operation can only be
applied to an owning pointer.

Key Design Choices

 Ownership is connected with the pointer
variable, not the object

 Ownership is tracked as O (non-owning) or 1
(owning)

— Partially to make solving the linear inequality
constraints easier

* Rank warnings with heuristics to minimize
impact of false positives

System Overview

Parse Source

Identify Constraints

Solve Constraints

‘ Report Errors \

CSE 504 -- 2010-04-14

41

Flow Sensitive Analysis

U = new int; //u is the owner
z = u;

delete z; //right before this line z is the owner

e Order of instructions matters

e Analysis identifies line 2 as a possible
ownership transfer point

Constraint Solving Problem

U = new int; //u is the owner
z = u;

delete z; //right before this line z is the owner

e Constructors indicate ownership

e Deletion indicates desired/intended
ownership

e Generate all other constraints from
assignments

e Solve to identify owners

Evaluation

_ Largest Exe
Fuckage Exe | Lib | Files Func | LOC | LOEC | Time
banatils |4 4 | MNIs | 147TK | TIK h
ppenssh i ¥ |31 1040 K | 15K | i
upache Lo 27 | 65 047 | &bk | 43K 24
licg L i il I6TS 2K | 15K 240
FiiWeb 48 |4 |73 m5a | 4k | 15K b=
SLUIE2 |2 3 X3 BETE TIK | 55K 53K

TOTAL 95 | 7T | 90l 15010 | 39K

Figure 4: Application characteristics: mamber of execulables,
libraries. filex, funclions, lines af code, lines of code i the
largest execulable and its ownership analyvsis time in seconds.

CSE 504 -- 2010-04-14

Evaluation -- C

Infruprocedural [nterprocedural
Fuckage Reporied | Bupx | Reported | Bugs | Escapes
banutils e 25 ¥l <lh [
openssh | K 73 | B A=
apache P I 7 | 32
Totul 51 265 2= 55 1167

igure 531 Reporied warnings and dentified errors on © appli-
cilions

85 bugs / 362 warnings = 23% true positives

CSE 504 -- 2010-04-14

Evaluation — C++

Recemver-Field | Intraprocedural Interprocedural Sender-Fueld
Reported | Mapor Mipor | Reported | Major || Reporied | Major | Minor || Escapes

LT il iz [} il 4t 4 {h 134 a6

42 il 4 i3 14 14 16 { 231 622

91 B T EE 5 Tk 2 578 513 ERG

171 b 143 Th 14 Ehd 22 578 LTS 544

Figare fi: Reported warnings on O+ applicidions, with identified major and minor errors

CSE 504 -- 2010-04-14

46

False Positives

For C
85 errors for 362 warnings — 23% accuracy

Many errors due to abnormal flow paths
— breaks, error conditions, etc.

For C++
777 errors out of 1111 warnings — minor

49 errors out of 390 warnings — 12.5% accuracy
— Double deletes, incorrect destructors

END.

Flow Insensitive

e |nstruction order doesn’t matter

char *a; a=malloc(10); strcpy(a, “hello”); a=malloc(3);

Is analyzed the same as

char *a; a=malloc(3); strcpy(a, “hello”); a=malloc(10);

Not Sound and Not Complete

* Lack of pointer treatment makes this unsound

— True positives can be missed

* Already an imprecise algorithm, so it is
incomplete

— False positives could be generated

e Evaluation will be very important

Sendmail findings

An unchecked sprintf() from the results of a DNS lookup to a 200-byte stack-resident buffer;
exploitable from remote hosts with long DNS records. (Fixed in sendmail 8.7.6.)

An unchecked sprintf() to a 5-byte buffer from a command-line argument (indirectly, via several
other variables); exploitable by local users with “sendmail -h65534 ..."”. (Fixed in 8.7.6.)

An unchecked strcpy() to a 64-byte buffer when parsing stdin; locally exploitable by “echo /canon
aaaaa... | sendmail -bt”. (Fixed in 8.7.6)

An unchecked copy into a 512-byte buffer from stdin; try “echo /parse aaaaa... | sendmail -bt”.
(Fixed in 8.8.6.)

An unchecked sprintf() to a 257-byte buffer from a filename; probably not easily exploitable. (Fixed
in 8.7.6.)

A call to bcopy() could create an unterminated string, because the programmer forgot to explicitly
add a’\0’; probably not exploitable. (Fixed by 8.8.6.)

An unchecked strcpy() in a very frequently used utility function. (Fixed in 8.7.6.)

An unchecked strcpy() to a (static) 514-byte buffer from a DNS lookup; possibly remotely
exploitable with long DNS records, but the buffer doesn’t live on the stack, so the simplest attacks
probably wouldn’t work.

Also, there is at least one other place where the result of a DNS lookup is blindly copied into a static
fixed-size buffer. (Fixed in 8.7.6.)

Several places where the results of a NIS network query is blindly copied into a fixed-size buffer on
the stack; probably remotely exploitable with long NIS records. (Fixed in 8.7.6 and 8.8.6.)

Double Free Exploit

Freeing a memory block twice corrupts allocation
structures

First free puts block back in list

Second free mucks with forward and back pointers so
they point to the same block (the current block)

Now future requests for blocks of that size will always
return the same block

Write two memory addresses (8 bytes) to this chunk

Make another request of the same block size, same
block will be used but since we just filled in data for
forward and back pointers, we can write to any
memory we want

cut

* Enforce ownership with a type system
— Infer types from code
— No user provided annotations
— Sound
— Minimizes false positives by prioritizing constraints

Definition of Escape

* Escaping violations refer to possible transfers of
ownership to pointers stored in structures, arrays
or indirectly accessed variables. While these
warnings tell the users which data structures in
the program may hold owning pointers, they
leave the user with much of the burden of
determining whether any of these pointers leak.
Users are not expected to examine the escaping
warnings, so we only examined the non-escaping
warnings to find program errors.

Minor Errors in C++

* First, many classes with owning member fields do not
have their own copy constructors and copy operators;
the default implementations are incorrect because
copying owning fields will create multiple owners to
the same object. Even if copy constructors and copy
operators are not used in the current code, they should
be properly defined in case they are used in the future.

* Second, 578 of the 864 interprocedural warnings
reported for SUIF2 are caused by leaks that occur just
before the program finds an assertion violation and
aborts. We have implemented a simple interprocedural
analysis that can catch these cases and suppress the
generation of such errors if desired.

