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1980’s to early 1990’s 

– Widespread adoption of personal computers 

– Limited or no network connectivity 

– Initially no hard drives; just floppy disks 

– Single user operating systems 

– Attack model: Somebody steals or tampers 

with my floppy disk. 

– Limited attention to software security 



Mid 1990’s to early 2000’s 

• Broad internet adoption 

• Massive improvements in hardware 

performance 

• Massive increase in software complexity 

• Multi-user operating systems 

• New complex threats to computer security 

 

 



Worms: Code Red 

• Released July, August 2001 

– Infected 360,000 machines 

– Spread slowly (days) 

– Payload: (among others) DOS attack 

against www.whitehouse.gov 



Worms: Slammer 

• Released January 25, 2003 

– 75,000 vulnerable machines 

– Almost all of them infected within 10 minutes 

– No payload beyond worm propagation 

– Worm packets sent from infected machines 

saturated parts of the internet. 

• Exacerbated by crashes of internet routers. 



Worms: Blaster 

• Released: August 2003 

– 500,000 infected machines 

– Spread much more slowly than Slammer 

(days) 

– Author was found and sentenced to 18 

months in jail. 

 



Worms 

• Each of these worms 

– Made newspaper headlines 

– Caused huge financial damages 

– Exploited vulnerabilities for which patches had 

been issued several months earlier 

• There have been more highly-visible 

worms 

– But not many more 

 



What happened next? 

• Lots of work on techniques for avoiding attacks. 

– Some of them are practical. 

– Some of them are in widespread use. 

• Stack canaries, ASLR, NX, static analysis tools, pen-testing, 

fuzzing, software development standards 

• Developer awareness: check for buffer overflows etc. 

• User awareness: install patches asap; use AV, use firewalls 

• Response infrastructure: fast patch release, AV 

 

• A new kind of attacker emerges 

– Interested in financial gain, rather than vandalism 

– Cyber warfare 



Case study: Slammer 

• Buffer overflow vulnerability in Microsoft SQL 

Server (MS02-039). 

• Vulnerability of the following kind: 

 

ProcessUDPPacket() { 

      char SmallBuffer[ 100 ]; 

 

      UDPRecv( LargeBuff ); 

      strcpy( SmallBuf, LargeBuf ); 

      … 

} 



Case Study: Slammer 

• Slammer is a single UDP packet 

• Contains a string that overflows 

SmallBuffer, 

– Overwriting the return address on the stack 

– Placing the payload on the stack directly 

above the return address. 

• Payload 

– Repeat forever 

Dest_IP = random(); 

UDPSend( Dest_IP, SlammerPacket  ); 



Vigilante 



The worm threat 

• worms are a serious threat 

– worm propagation disrupts Internet traffic 

– attacker gains control of infected machines 

• worms spread too fast for human response 
– Slammer scanned most of the Internet in 10 minutes 

– infected 90% of vulnerable hosts 

 

worm containment must be automatic 
 

 

 

 

 



Automatic worm containment 

• previous solutions are network centric 

– analyze network traffic  

– generate signature and drop matching traffic or 

– block hosts with abnormal network behavior 

• no vulnerability information at network level 

– false negatives: worm traffic appears normal 

– false positives: good traffic misclassified 

 

false positives are a barrier to automation 

 



Vigilante’s end-to-end architecture 

• host-based detection 

– instrument software to analyze infection attempts  

• cooperative detection without trust 

– detectors generate self-certifying alerts (SCAs) 

– detectors broadcast SCAs  

• hosts generate filters to block infection 

 

 can contain fast spreading worms with small 

number of detectors and without false positives 
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Worm containment 

Internet 

• Vigilante Detectors 
– Analyze execution of 

application 

– Produce alerts (SCAs) 
based on attack packets 
and vulnerable applications 

– Broadcast SCAs over the 
Pastry P2P network 

Detector 

SCA 
SCA 

SCA 

SCA SCA 

• Receive SCAs 

• Verify SCAs 

• Generate packet filters from 
SCAs 

• Deploy packet filters 



Vigilante’s components 
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Outline 

• self-certifying alerts (SCAs) 

• detection and generation of SCAs 

• generation of vulnerability filters   

• evaluation 

 



Self-certifying alerts 

• identify an application vulnerability 

– describe how to exploit a vulnerability  

– contain a log of events 

– contain verification information 

• enable hosts to verify if they are vulnerable 

– replay infection with modified events 

– verification has no false positives 

 

enable cooperative worm containment without trust 



SCA types 

• arbitrary code execution (ACE) 

– attacker can execute code in message 

– code injection 

• arbitrary execution control (AEC) 

– attacker can load a value in message into the PC 

– no code injection (e.g. return into libc) 

• arbitrary function argument (AFA) 

– attacker can call function with arbitrary argument 

– data-only attacks, no abnormal control flow 

 

 

 



Verifying an AEC alert 

vulnerable process 

normal  

code 

verified 
alert type: AEC , attack message: 

verification information:  

program counter is at offset 6 of attack message 

11111144444444111 
recv 

0x44444444 

proves that external 

interfaces allow arbitrary 

control of the execution 

SCA 

11111111111111111 

verification information enables independence 

verification is independent of detection mechanism 



SCA generation 

• log events 

• generate SCA when worm is detected 

– compute verification information  

– search log for relevant events 

– generate tentative version of SCA 

– repeat until verification succeeds   

• detectors may guide search 

– dynamic dataflow analysis is one such detector  

 



Detection 

• dynamic dataflow analysis 

• track the flow of data from input messages 

– mark memory as dirty when data is received 

– track all data movement 

• trap the worm before it executes any instructions 

– track control flow changes 

– trap execution of input data  

– trap loading of data into the program counter 



Detection and SCA Generation 

stack pointer return address 

msg1 

buffer 

id  100 

id  400 

id  100 

id  400 
//vulnerable code 

 push len 

 push netbuf 

 push sock 

 call recv 

 push netbuf 

 push localbuf 

 call strcpy 

 ret  

log:  1111111111111111111 

id  400 id  100 

msg1 

id 236  

AEC,                                             , pc at offset 136 SCA: 1111111111111111111 

direct extraction of verification information 

high coverage  



Cooperative worm containment 

• SCA enables cooperative containment 

– any host can be a detector 

– hosts can run high-overhead detection engines  

– hosts can run different detection engines 

– small TCB for SCA verification 

 

cooperation enables low false negative rate 



SCA broadcast 

• uses secure overlay: Pastry 

– hosts join overlay 

– detectors flood alerts over overlay links 

• denial-of-service prevention 

– per-link rate limiting  

– per-hop filtering and verification 

– controlled disclosure of overlay membership 

 

hosts receive SCAs with high probability 

 



Protection 

• hosts generate filter from SCA 

• dynamic data and control flow analysis 

– run vulnerable application in a sandbox 

– track control and data flow from input messages 

– compute conditions that determine execution path 

– filter blocks messages that satisfy conditions 

 



• … 

• cmp eax,buf[23] 

• jne addr1 

• … 

• … 

• test ecx, buf[13] 

• je addr2 

• … 

• … 

• mov eax,buf[20] 

• call eax 

Execution trace filters 

addr1 

addr2 

Vulnerability point 

Program start 

Condition 1 

Condition 2 



Generating filters for vulnerabilities 

0x3 0x24 0x67 0x42 0x1 attack: 

mutation: 0x3 0x12 0x28 0x63 0x4 

=3 ≠0 ≠0 ≠0 ≠0 filter: 

  //vulnerable code  

  mov al,[msg]  

  mov cl,0x3 

  cmp al,cl 

  jne L2  //msg[0] == 3 ? 

  xor eax,eax 

L1  mov [esp+eax+4],cl 

  mov cl,[eax+msg+1] 

  inc eax 

  test cl,cl 

  jne L1  //msg[i] == 0 ? 

L2  ret 

Match! 

look at the program, not at the messages 

find control flow decisions that enable the attack   



Filters 

• capture generic conditions 

– dataflow graphs of CPU instructions 

• safe and efficient 

– no side effects, no loops 

• accumulating all control flow decisions limits 

the amount of polymorphism tolerated 

– two filter design alleviates this 

– details in the paper, still improving 

 



• Central question: 

– What if the exploit mutates? 

– Will the filter still cover exploits that differ from the 

exploit the detector saw? 

• Good: 

– Any byte in the input that does not alter the execution 

path of the application can be changed. 

– Immune to a large class of mutations. 

• Bad: 

– Mutations that alter the execution path of the 

application can bypass the filter. 

 

Properties of execution trace filters 



• <title> … </title> 

• <body> 

• <IMG …>… </IMG> 

• <A …> …</A> 

• <span> … </span> 

 

• Arbitrary sequence of HTLM tags 

 

• Tag that exploits the vulnerability 

• <script> exploit </script>  

 

• Arbitrary sequence of HTML tags 

 

• </body> 

 

• All the irrelevant tags on the page affect the execution trace. 

• Thus, the attacker can thwart execution trace filters by adding irrelevant input. 

 

• Follow up work by the authors and others tries to address this problem. 

HTLM Exploit 



Evaluation 

• three real worms: 

– Slammer (SQL server), Blaster (RPC), CodeRed (IIS) 

• measurements of prototype implementation 

– SCA generation and verification 

– filter generation 

– filtering overhead 

• simulations of SCA propagation with attacks 
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Time to verify SCAs 
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Time to generate filters 
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Filtering overhead 
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Simulating SCA propagation 

• Susceptible/Infective epidemic model 

• 500,000 node network on GeorgiaTech topology 

• network congestion effects 

– RIPE data gathered during Slammer’s outbreak 

– delay/loss increase linearly with infected hosts  

• DoS attacks 

– infected hosts generate fake SCAs 

– verification increases linearly with number of SCAs 
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Conclusion 

• Vigilante  can contain worms automatically 

– requires no prior knowledge of vulnerabilities 

– no false positives 

– low false negatives 

– works with today’s binaries 


