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(A Few) Runtime Safety Approaches

Approach Year Summary

SFI 1994 Software Fault Isolation.

Bounds checking C 1995 Jones and Kelly, CRED.

StackGuard 1998 Canaries.

ASLR 2001 Address Space Layout Randomization (e.g. PAX).

Program 
Shepherding

2002 Run through an interpreter and verify branch instructions.

PointGuard 2003 Pointers encrypted in memory and decrypted at time of use.

CFI 2005 Control-Flow Integrity.

DieHard 2005 Multiple, large heaps with different allocation.

DFI 2006 Data-Flow Integrity.

WIT 2008 Write Integrity Testing.

NaCL 2009 Native Client. Uses SFI. Performs CFI.
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CFI: Control-Flow Integrity

• Ensure execution follows the control-flow graph 
(CFG).
– Statically analyze binary to identify valid destinations 

of all control transfers.
– Instrument code with:

• Unique IDs at destinations.

• Checking destination IDs before all instructions 
that transfer control.

• Not concerned with read or write destinations.
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DFI: Data-Flow Integrity

• Restrict reads based on instructions that wrote 
the data.
– Statically analyze source to identify the instructions 

that are allowed to write values that are read.
– Instrument code to:

• Maintain a table of the last instructions to write 
memory locations.

• Check the last-write table on reads against 
computed allowed write instructions.

• Not directly concerned with control flow.
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Preventing memory error exploits 
with WIT

Periklis Akritidis, Cristian Cada, Costin 
Raiciu, Manuel Costa, Miguel Castro

Microsoft Research, Cambridge UK



Example Vulnerable Code

1:  char cgiCommand[1024];
2:  char cgiDir[1024];
3:
4:  void ProcessCGIRequest(char* msg, int sz) {
5:      int i=0;
6:      while (i < sz) {
7:          cgiCommand[i] = msg[i];
8:          i++;
9:      }
10:
11:     ExecuteRequest(cgiDir, cgiCommand);
12: }
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Data-modifying Commands

1:  char cgiCommand[1024];
2:  char cgiDir[1024];
3:
4:  void ProcessCGIRequest(char* msg, int sz) {
5:      int i=0;
6:      while (i < sz) {
7:          cgiCommand[i] = msg[i];
8:          i++;
9:      }
10:
11:     ExecuteRequest(cgiDir, cgiCommand);
12: }
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Line 7’s Modified Objects

1:  char cgiCommand[1024];
2:  char cgiDir[1024];
3:
4:  void ProcessCGIRequest(char* msg, int sz) {
5:      int i=0;
6:      while (i < sz) {
7:          cgiCommand[i] = msg[i];
8:          i++;
9:      }
10:
11:     ExecuteRequest(cgiDir, cgiCommand);
12: }
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WIT: Write Integrity Testing

• Approach:
1. Determine memory locations that individual 

instructions should legitimately be able to write to.

2. Only allow a given instruction to write to those 
locations.

• Memory errors to protect against:
– Buffer overflows and underflows

– Dangling pointers
– Double frees
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Static Analysis

• Two stages:
1. Points-to analysis

2. Write safety analysis

• Goal: Create a color table.
– Give each unsafe object a different color.

– Give each write instruction the same color as the 
objects it can write.
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Static Step 1: Points-to Analysis

• Compute the set of objects that can be modified 
by each program instruction.

• In the example:
– Set {i} for the instructions at lines 5 and 8

– Set {cgiCommand} for the instruction at line 7
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1:  char cgiCommand[1024];
2:  char cgiDir[1024];
3:
4:  void ProcessCGIRequest(char* msg, int sz) {
5:      int i=0;
6:      while (i < sz) {
7:          cgiCommand[i] = msg[i];
8:          i++;
9:      }
10:
11:     ExecuteRequest(cgiDir, cgiCommand);
12: }



Static Step 2: Write Safety Analysis

• Purpose: runtime efficiency.
• For all instructions and objects, determine 

whether safe or unsafe.
– Safe instruction: cannot violate write integrity.

• No destination operand

• Operand is temporary, local, or global variable.
– Safe object: all instructions that can modify it are 

safe.
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Safe

1:  char cgiCommand[1024];
2:  char cgiDir[1024];
3:
4:  void ProcessCGIRequest(char* msg, int sz) {
5:      int i=0;
6:      while (i < sz) {
7:          cgiCommand[i] = msg[i];
8:          i++;
9:      }
10:
11:     ExecuteRequest(cgiDir, cgiCommand);
12: }
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Not Safe

1:  char cgiCommand[1024];
2:  char cgiDir[1024];
3:
4:  void ProcessCGIRequest(char* msg, int sz) {
5:      int i=0;
6:      while (i < sz) {
7:          cgiCommand[i] = msg[i];
8:          i++;
9:      }
10:
11:     ExecuteRequest(cgiDir, cgiCommand);
12: }
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Example Color Table

Color Instructions Objects

0 Lines 5, 8 msg, sz, i

3 Line 7 cgiCommand

4 cgiDir

• Record the color of each memory location.
• Color 0 is used for safe objects.
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Function Colors

• Compute possible indirect function calls.
• Colors assigned to functions are disjoint from 

those assigned to objects.
• Prevents:

– Unsafe instructions from overwriting code.
– Control transfers outside code regions.
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Instrumentation

• Use information from static 
analysis.

• Add instrumentation during 
compilation.
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• Insert guards.

• Maintain color table.

• Check writes.

• Check indirect calls.



Instrumentation

• Points-to analysis is 
imprecise.
– False negatives possible

• Insert guards between 
unsafe objects.

• Guard objects have color 0 
(safe objects).
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• Insert guards.

• Maintain color table.

• Check writes.

• Check indirect calls.



Instrumentation

cgiDir
[1024]

cgiCommand
[1024]

GUARD (8 bytes)

GUARD (8 bytes)

GUARD (8 bytes)
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• Insert guards.

• Maintain color table.

• Check writes.

• Check indirect calls.



Instrumentation

• Different for the stack, heap, 
and global data.

• Heap allocator’s header 
used as a guard by setting 
its color to 1.
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• Insert guards.

• Maintain color table.

• Check writes.

• Check indirect calls.



Instrumentation

• Tricky guard case:
– Function arguments written by 

unsafe instruction.
– Solution: Copy argument to 

local variable, guard that, and 
rewrite instructions to refer to 
the copy.
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• Insert guards.

• Maintain color table.

• Check writes.

• Check indirect calls.



Instrumentation

• 8-bit color for each 8-byte 
memory slot
– Space overhead is 12.5%
– Pad generated code.

• Instrument function 
prologues and epilogues to 
set and reset color table 
entries.

• Wrappers for allocation 
functions (malloc, calloc, 
free).
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• Insert guards.

• Maintain color table.

• Check writes.

• Check indirect calls.



Instrumentation

• Only check writes by unsafe 
instructions.

• Compare color of instruction 
to destination operand.
– If they do not match, raise an 

exception.
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• Insert guards.

• Maintain color table.

• Check writes.

• Check indirect calls.



Instrumentation

• Lookup the color of the 
target function.

• Compare with the color of 
the indirect call instruction.
– If they do not match, raise an 

exception.

• Zero last three bits of 
function pointer value to 
ensure 16-byte aligned, 
which should normally be 
the case.
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• Insert guards.

• Maintain color table.

• Check writes.

• Check indirect calls.



Prevented Attacks

• WIT can prevent all attacks that violate write 
integrity.
– Depends on precision of points-to analysis.

• If two objects have the same color, WIT may fail 
to detect an attack.

• Sequential overflow always prevented even if 
colors match.

• What about reads?
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Number of Writable Objects
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CPU Overhead
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Memory Overhead
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Testing with Vulnerabilities

• Successful against benchmark of 18 control-data attacks 
that exploit buffer overflows.
• All but one are detected when guard object overwritten. The 

other is detected when a corrupted pointer is used to overwrite a 
return address (color 0).

• Tested with known vulnerabilities in real apps.
• All detected when buffer overflow hit a guard object at the end of 

the buffer.
• SQL Server sprintf overflow of stack buffer (Slammer).
• Ghttpd vsprintf overflow of stack buffer.
• Nullhttpd heap buffer overflow causes heap management 

data structures to be overwritten.
• Stunnel vsprintf format string overflow of stack buffer.
• Libpng stack buffer overflow.
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Limitations

• Libraries
• WIT as just described doesn’t work for libraries.
• WIT for libraries assigns the same well-known color to 

all unsafe objects allocated by libraries.
– Will WIT work without recompiled libraries?
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DieHard: Probabilistic Memory 
Safety for Unsafe Languages

Emery D. Berger and

Benjamin G. Zorn



Non-fatal Memory Errors

• Existing approaches either:
– Abort when memory errors detected.
– Continue anyways (!)

• How about detecting the memory error and 
allowing the program to continue correctly?
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DieHard in a Nutshell

• Randomize object locations in a large heap.
• Can operate in a replicated mode.

–  Multiple replicas of the same application are run 
simultaneously. Require agreement on output.
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Randomized Object Locations

• Likely that buffer overflows end up overwriting 
only empty space.

• Unlikely that a newly-freed object will soon be 
overwritten by a subsequent allocation.
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Replication

• Stand-alone DieHard cannot detect uninitialized 
reads.

• Solution: execute several replicas 
simultaneously.
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Detecting Uninitialized Reads

1. Fill allocated object with random values.

2. Execute same program in multiple replicas.

3. Compare outputs.
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Replica Communication

• DieHard uses pipes and shared memory to 
communicate with replicas.

• Each replica receives stdin from and writes 
stdout to DieHard.

• DieHard compares output from replicas.
• Support not implemented for programs that 

modify filesystems or perform network I/O.
• How would you support non-deterministic 

programs?
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Avoiding Buffer Overflows

“…for our analysis, we model a buffer overflow as 
a write to any location in the heap.”
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Avoiding Dangling Pointers

“…the likelihood that the object’s contents are not 
overwritten after A intervening allocations”
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Runtime on Linux
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Other Approaches

Rx: rollback to a checkpoint, re-execute in a modified environment.
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Comparison
Approach Protections Limitations CPU Overhead

Memory-safe C
(CCured, Cyclone)

All memory errors. Source and runtime changes (e.g. 
garbage collector).

High

Taint analysis Many memory errors. Accuracy vs. automation. 2x WIT

Bounds checking C All buffer overflows. Doesn’t work with all programs. 
Protection granularity limited by 
compile-time information.

Up to 12x WIT

StackGuard, et al. Specific targets (e.g. 
return address).

Only defend against specific attacks. Low

CFI Control-flow. Data not protected. 15-45%

DFI Some out-of-bounds 
reads and writes

No guards against imprecise 
analysis.

104% over WIT
(so, 20-50%)

WIT Incorrect writes. Library incompatibility. 10-25%

DieHard Probabilistic memory 
safety.

Large heap, only supports simple 
programs.

12-109%.

Dhurjati’s improvements 
on Jones and Kelly

Most out-of-bounds 
reads and writes.

No protection of buffer overflow 
inside structures or use of freed 
pointers, 

30-125%

Most numbers from WIT’s paper. Don’t take the numbers too seriously, they’ve been 
adjusted to have about the same frame of reference. Protections and limitations also 

require grains of salt.
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Summary: WIT and DieHard

• WIT
– Static analysis + instrumentation to protect writes.
– Reasonably practical if everything compiled with WIT.

• DieHard
– Randomize heap object locations and run multiple 

copies of the program.

– Replicas fairly impractical, just an interesting 
academic idea. (My uneducated opinion, of course.)
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