
Functional Programming — Mini-Exercises

CSE 505, Autumn 2001

These are a number of very small exercises that we’ll do and discuss in class. You don’t need to hand in anything.

1. Themap function can be defined as follows:

map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (a:x) = f a : map f x

Write a functionmap2 that is analogous tomapbut works for functions of two arguments rather than one. What
is its type? For example,

map2 (+) [1,2,3] [10,11,12]

should evaluate to [11,13,15]

2. Consider the following Haskell code.

do putStr "please enter some text:"
s <- readLn
putStr s

Rewrite this using only the primitive operators>> and>>=.

3. The monadic functionputChar , defined in the Prelude, has the following type:

Char -> IO ()

Is the following expression type-correct? What does it do?

map putChar "hello world"

4. Write a Haskell functionrepeatLine that reads in a line of text, and returns that text concatenated with itself.
The type of this function should be

repeatLine :: IO String

5. If I declare a new type as follows

data MyList a = Cons a (MyList a) | Nil

What is the type of(Cons 4 (Cons 3 Nil)) ?

What gets printed when you evaluate the expression? How can you get it to print correctly?

1


