Subtyping Motivation

Fundamental tension between static type safety and reusability.

o distFromOrigin — Ar:{x:Int, y:Int}. sqrt((rx * r.x) + (ry * r.y))
o F distFromOrigin : {x:Int, y:Int} — Real

e distFromOrigin accepts records containing x and y integer compo-
nents and no other components

> (distFromOrigin {x=3, y=4}) : Real

> {x—=3, y—4, color—1} : {x:Int, y:Int, color:Int}

> (distFromOrigin {x—3, y—4, color—1}) is not well-typed
Parametric polymorphism doesn’t help.

e [t would be unsound to give distFromOrigin the type o — Real.

e The argument to distFromOrigin must have integer components
named x and y.

CSE505 77

Formalizing Subtyping

Need to define the subtyping relation.

o Typically, each form of type has its own subtyping rule(s).
e Here is the syntax of types we'll discuss:

T = {li:Thy... 0, Ty} record type
T — T, function type
Bool | Int base types

Need to formalize subtype substitutability.
e Add a “subsumption” typing rule.

CSE505 79

Subtyping Overview

Introduce a subtyping relation between types.

Informally, if 737 is a subtype of Ty (denoted 77 < T3), then T3 is a
“more-specific” type than T5.

Made concrete by the principle of subtype substitutability: if Ty < Tp,
then any value of type T} can be safely used in a context expecting a
value of type T5

This solves the problem for distFromOrigin:
o F distFromOrigin : {x:Int, y:Int} — Real
o F {x-3, y—4, color—1} : {x:Int, y:Int, color:Int}
o {x:Int, y:Int, color:Int} < {x:Int, y:Int}
e therefore - (distFromOrigin {x—3, y—4, color—1}) : Real

CSE505 78

The Base Type System

'ey:Thy -+ T'kFe,: T, n2>0 (T-True)

Fr{li=en...;ln=ex} : {li:T1,...,0ln: Ty}

(T-Rec) T" I true : Bool

I'Fey:Bool 'kexy: T T'heg: T

I'Fif e theneselsees : T
F'ke:{l1:T1,...,lp: T} Nn>m>0 .
1 i“l—e.lm:Tm} (T-Proj)
T I false : Bool (T-False)
Tu{z: T} Fe: Ty
(T-Abs)
' (Ax:Ti.e): T T:
(e :Tre): T > T Tre:T=T The:Thp,
z: T el I'tee: T
Fl—w:T(T_Var)
CSE505 80

(T-If)

Subtyping Judgements

Introduce a new typing judgement of the form 77 < T5.
Define the meaning of the new judgement via a set of inference rules.
Ty subtypes Ty if there is a legal derivation tree whose root is T < Ts.

Preliminaries

e Subtyping is reflexive.

T<T (S-Refl)

e Subtyping is transitive.

<1, T,<7T;
T' <13

(S-Trans)

CSE505 81

Depth Subtyping for Records

Width subtyping requires the common components to be identically
typed.

It is also sound to allow the more-specific record’s components to have
more-specific types.

The following function determines whether a line (represented by its end-
points) is horizontal or vertical.

o Al{p:{x:Int,y:Int}, q:{x:Int,y:Int}}.(Lp.x—l.q.x or Lp.y—l.q.y)
e We should be able to pass {p—{x—3,y—4}, q—{x—5,y—4,color—1}}
to the function.

The general case is known as depth subtyping, because we are allowed to
use a “deeper” record than expected.

{h:Ty,... Ty <{L:T7,...,0,: T)}

(S-RecDepth)

CSE505 83

Width Subtyping for Records

As we've already seen, {x:Int, y:Int, color:Int} < {x:Int, y:Int}.

o The type {x:Int, y:Int} now describes records with at least compo-
nents x and y, both of type Int.

e The type {x:Int, y:Int, color:Int} is more specific, in that it further
mandates a color component of type Int.

The general case is known as width subtyping, because we are allowed to
use a “wider” record than expected.

n>m>0
{llZTl,...,lnITn}S{lliTl,...

T T (S-RecWidth)

CSE505 82

Order Subtyping for Records
The only thing you can do to a record — access its components — is
insensitive to the order of those components.
Therefore, we should be able to re-order components safely.

e distFromOrigin — Ar:{x:Int, y:Int}. sqrt((r.x * r.x) + (ry * r.y))
e We should be able to pass {y—8x—6} to distFromOrigin.

The general rule:

{h:Th,...,l, : T} is a permutation of {l} : T7,...,0, : T} }
{h:Thy,... L, Ty <{{y:17,...,U,: T}

(S-RecPerm)

CSE505 84

Example Derivation

Let’s show that {x:{a:Int,b:Int}y:Int} < {x:{a:Int}}.

{a:Int,b:Int} (S-RecWidth)

: < {a:Int}
{x:{a:Int,b:Int},y:Int} (S-RecWidth) {x{a:Int,b:Int}} (S-RecDepth)
< {x:{a:Int,b:Int}} < {x:{a:Int}}
{x:{a:Int,b:Int,y:Int}} < {x:{a:Int}} (S-Trans)

Contravariance Example
test = Aa:{f:{x:Int,y:Int,color:Int} — {x:Int,y:Int},
p:{x:Int,y:Int,color:Int} }.(a.f a.p)
[t is safe to pass the following function for f.
negate — Ap:{x:Int,y:Int} {x—(-px),y—(-p.y)}
o test {f—negate,p—{x—3,y—4,color—1} — {x—3,y—4}
[t is not safe to pass the following function for f.
maybeNegate — Ap:{x:Int,y:Int,color:Int flag:Bool }.
if p.flag then (negate p) else p
o test {f—maybeNegate,p—{x—3,y—4,color—1} — CRASH

CSE505 87

Function Subtyping

Since functions are first-class, we must say when it’s safe to substitute
one function for another.

Consider g — ATy — Ty, .. .f(--)... What assumptions can g make
about the function f passed to it?

e f can be sent any value of type T}
e f returns some value of type T

Therefore, a function f’ can be safely passed to g if:

e f’ can be sent any value of some supertype of T}
e f’ returns some value of some subtype of T5

Function subtyping is contravariant in the argument type and covariant
in the result type.

N<Th Th<T;
T1—>T2§T1/—)T2,

(S-Fun)

CSE505 86

The Full Subtyping Relation

T <Ty, T, <T;
T <T3

(S-Refl) (S-Trans)

TT

m)
< {0 Th o Tod (S-RecWidth)

== (S-RecDepth)

{lh:Ty,...,l, : T} is a permutation of {] : T7,...,lI, : T)}
{li:Ty, . Ty <{l:Ty,...,0,:T}}

(S-RecPerm)

Ti<TW Ta<Ty
T1—>T2ST{—)T21

(S-Fun)

CSE505 88

Subsumption

Finally, we formalize subtype substitutability with an intuitive subsump-
tion rule:

Fr-E:T T'<T
'-E:T

(T-Sub)

An expression’s type can be “weakened” to a supertype.

This rule is the bridge between the subtyping relation and the expression
typing relation.

CSE505 89

Two Approaches to Object-Oriented Calculi

Encode OO constructs in terms of “standard” language constructs like
functions and records.

allows us to build on existing frameworks, like the A-calculus
defines what OO constructs “really” are

shows how OO constructs interact with other language features
illustrates how to compile OO constructs

Treat OO constructs as primitives, giving them a direct semantics.

e typically much simpler than the encoding style
e naturally models existing OO languages
e a platform for experimentation with OO language design

CSE505 91

Subsumption Example
We can now solve the problem in our motivating example.
distFromOrigin — Ar:{x:Int, y:Int}. sqrt((r.x * r.x) + (r.y * r.y))

Use subsumption to “weaken” the type of the argument.

F {x=3, y=4, color=1}
{x:Int, y:Int, color:Int} {x:Int, y:Int, color:Int} < {x:Int, y:Int}
F {x=3, y—4, color—1}:{x:Int, y:Int}

Now the regular function application rule applies.

F distFLc.)r.nOrigin see above
{x:Int,y:Int} — Real F {x—3, y—4, color—1}:{x:Int, y:Int}
F (distFromOrigin {x=3, y=4, color=1}):Real

CSE505 90

The “Encoding” Style: Objects as Records

Pt = {x:Int,y:Int,getX:Pt—Int,getY:Pt—Int}
CPt — {x:Int,y:Int color:Int,getX:Pt—Int, getY:Pt—Int,getC:CPt—Int}

e Note the need for recursive types.
myPt:Pt — {x—3,y—4,getX—Ap:Pt.(p.x), getY=Ap:Pt.(p.y)}

myCPt:CPt — {x—3,y—4,color—1,getX—Ap:Pt.(p.x),
getY=Ap:Pt.(p.y), getInt=Ap:CPt.(p.color)}
Need some pretty heavyweight constructs to encode

e classes
e inheritance
e self-application semantics

CSE505 92

The “Direct” Style: Featherweight Java,

A core calculus for understanding Java’s semantics.

developed by Igarashi, Pierce, and Wadler in 1999.

e significantly simpler than previous formalisms for Java
e cach FJ program is (essentially) a legal Java program
e no Greek letters!

Meant to capture the essence of Java, and nothing else.

e contains objects/classes, fields, methods, casting

e omits assignment, interfaces, overloading, super sends, exceptions,
access control, base types, ...

Proven sound.

Successfully used to formalize extensions to the base language.
e GJ
e inner classes
e ArchJava

CSE505 93

Some FJ Classes

class A extends Object { A() { super(); } }
class B extends Object { B() { super(); } }

class Pair extends Object {
Object fst;
Object snd;
Pair(Object fst, Object snd) {
super(); this.fst=fst; this.snd=snd; }
Pair setfst(Object newfst) {
return new Pair(newfst, this.snd); }
}

CSE505 95

FJ Syntax

CL - class Cextends D {C f; KM} classes
K ::= C(C f) {super(g); thisf-f} constructors
M ::= C m(C X) {return e;} methods

e X variable
et field access
e.m(€) message send
new C(€) object creation
(C)e cast
v = new C(Vv) values
CSE505 94

Informal FJ Evaluation

field access
e new Pair(new A(), new B()).snd — new B()

message send

e new Pair(new A(), new B()).setfst(new B()) —
[newfst — new B(), this — new Pair(new A(), new B())]
new Pair(newfst, this.snd) =
new Pair(new B(), new Pair(new A(), new B()).snd) —

new Pair(new B(), new B())
cast

o ((Pair) new Pair(new A(), new Pair(new A(), new B())).snd).fst —
((Pair) new Pair(new A(), new B())).fst —
new ialr(new A(), new B()).fst —

CSE505 96

Formal FJ Evaluation

A (mostly) standard call-by-value operational semantics.

Evaluating field access:

fields(C) = C f

(new C(¥)).f; — v;

e —c (E-Field)

ef— e f

(E-ProjNew)

A “class table” C'T" maps class names to their definitions. These definitions
are used to access information about a class’s fields and methods.

fields(Object) — o

CT(C) — class C extends D {C f; K M}
fields(D) ~ D g
fields(C) - Dg Cf

CSE505 97

FJ Subtyping

In contrast with the structural subtyping we saw with records and func-
tions, Java (like most OO languages) has by-name (nominal) subtyping.

C— D D< E CT(C)—class Cextends D {...}
C<:E C <D

C<: C

Structural subtyping is seen as more elegant.

e Types are completely self-describing.
e Subtyping is essentially inferred.
e Easier to manage in a formal setting.

By-name subtyping matches real languages.

o Class names are (sort of) a form of abstract data type.

e Naming provides a simple form of recursion.

e By-name subtyping is natural in the presence of inheritance.
e Class names are tags used for dynamic dispatching.

CSE505 99

Formal FJ Evaluation (cont.)

Evaluating message sends (the reduction rule):

mbody(m,C) = (X,e)
(new C(¥)).m() — [X +— T, this — new C(¥)]

. (E-InvkNew)

e mbody(m,C) returns the formal parameter list and body of class C’s
(possibly inherited) method named m

Evaluating casts (the reduction rule):

C<D (
(D)(new C(¥)) — new C(¥)

E-CastNew)

CSE505 98

FJ Typechecking

Message send typing:

Object creation:

e “Algorithmic subtyping,” instead of a single subsumption rule.

CSE505 100

FJ Typechecking (cont.)
Method typing:

%:.C,this:C F ey : Dy Dy <: Cp
CT(C) — class Cextends D {...}
override(m,D,C — Cy)
Co m(C X) {return eg;} OK in C
e Weird new kind of typing judgement, because methods are not
stand-alone entities (and aren’t first-class).
e The analogue of the rule for typechecking lambdas.
e The override relation ensures equivariant method overriding.

CSE505 101

