What Language Theory?

Syntax
A (Relatively) Pragmatic Introduction to the o What constitutes a well-formed program?
Formal Study of Programming Languages o BNF grammar

Dynamic Semantics

e How is a program evaluated?

o e Denotational, axiomatic, operational semantics
Todd Millstein

Static Semantics
CSE505

October 26, 2001 e Which well-formed programs “make sense” (i.e. typecheck)?

e Typing rules, typechecking algorithms
Type Soundness

e What does “make sense” mean?
e Soundness proofs

1 CSE505 2

Why Language Theory? How Language Theory?

Elucidates the core ideas of programming languages. A pragmatic approach.

e reduction, values, type errors, type soundness e Focus on the core techniques used by language theorists today.

Clarifies a language design and implementation. e Give up on traditional topics like domain theory, denotational se-

e Which features are primitives, and which are “syntactic sugars™? mantics, and Hoare logic.

e How does this particular weird feature actually work? Place less emphasis on a particular language, concentrating instead on

Allows rigorous statements to be made about a program. the (largely language-independent) techniques.

e Goal: Students should be able to read an avarage POPL paper and

e Program P is (not) well-formed. understand the goals of the work, key concepts, notation.

e P will evaluate to value v.
e Certain kinds of errors will not occur when P is run. Relying on your questions, comments, feedback.
Provides a platform for language experimentation.

e Augment an existing language with my favorite construct.
e Augment an existing type system with my favorite kind of type.

[t’s fun. Really.

CSE505 3 CSE505 4

How Language Theory?

The A-calculus

e Intimidating name, simple idea.
e No need to know Greek, derivatives, or integrals.
e Foundation of all functional programming languages.

Dynamic semantics for the A-calculus

e Encodings of standard language constructs
e Structural operational semantics
e Specifying lazy vs. eager evaluation

Simply-typed A-calculus

e The core of every type system.
e Simple and intuitive.

Type Soundness for the Simply-typed A-calculus
Polymorphic Type Systems

CSE505 5

Free and Bound Variables

The abstraction Az.e binds z in the body of e.

A variable reference x is bound if it appears in the scope of a binder of
. Otherwise the reference is free.

A term is closed if it has no free variable references.
a-renaming

¢ Bound variables can be renamed without changing a term’s “mean-
mg.")\$1.(.’L’2 1171),)\$3.(£U2 .’133)
e Free variables cannot be renamed. Az1.(zg 1), Az1.(z3 1)

CSE505 7

A-calculus: Syntax

e 1 T variable

Az.e abstraction (function)

e e application (function call)
Conventions

e Metavariable z ranges over an infinite set of variable names.
o Metavariable e ranges over expressions (or terms) of the A-calculus

Where is the data that we pass to functions?

Some terms

o X
o \x.x
® ()\$1.$1 371))\CEQ.IQ

CSE505 6

Computing in the A-calculus

The only way to evaluate terms is via function application.
(B-reduction)

e ¢ — €’ means e “evaluates in one step to” €’

o [z — ej]e; means “the term obtained by replacing all free occur-
rences of x in e; with ey’

(Az.€1) e — [z — es]ey

e
x’ if x # 2/
Az [z +— e]e/ if x # 2’

and 2’ not free in e
[z — eley [z — e]es

[z — €]z
|z — e|z’
[z — e|(Az'.€)

[z — e](e1 e2)

Examples

o [z = zo](z(Az1.(z1 2))) = (To(Az1-(21 T0))
o [z — zg|(z(Ax. :c)) (zg [x — xo](Az1.21))

o [z = @] (z(Azo. (20 7)) = (20 [& = 0] (Az1.(2:1 2)))

CSE505 8

Reduction

A redex is an expression that matches a reduction rule.
o (Az.eq)es

Reduce each redex in a term until reaching a term with no redices, which
is the “result” of the computation.

(Az.(z 2))((Az.z)(A\e.7)) —

o (Az.x)(Az.2))((Az.2)(AT.T)) —
o (Az.z)(A\z.z)(\z.2)) —

o (Az.z)(A\z.T) —

° \z.x

A term that cannot be reduced further is in normal form.

CSE505 9

Reduction Strategies (cont.)

Let — be the reflexive, transitive closure of the — relation.

Theorem (Church-Rosser #1): If e 5 ey and e; — es, then there
exists ey such that ey — eq and e3 — e4.

Corollary: Each term has a unique normal form (if any).
But not every term has a normal form.

Theorem (Church-Rosser #2): If e has a normal form, then the normal-
order (lazy) reduction strategy will find it.

o (Az.(Az2.22)) (Az.(2 2)) (Az.(2 2)))

CSE505 11

Reduction Strategies

Normal-order reduction (call-by-name, lazy)

e Reduce the leftmost, outermost redex.

o (Az.(z x))(A\z.z)(A\z.2)) —

o (Az.z)(Az.2))((A\z.2)(A2) —>
o (Az.z)(Az.2)(A\z.2)) —

o (Az.z)(A\z.T) —

° \z.x

Applicative-order reduction (call-by-value, eager)

e Reduce the leftmost, outermost redex whose arg is in normal form.

o (Az.(z z))(A\z.z)(A\z.T)) —>
o (A\z.(z z))(A\z.2) —
o (A\z.z)(A\z.2) —

° \1.x

CSE505 10

Expressive Power

Believe it or not, the A-calculus is fully general: Church’s thesis is that
every “effectively computable” function can be encoded as a A-term.

Turing showed that every Turing machine can be encoded as a A-term,
and vice versa.

Practical impact: Useful as a platform for language design experimenta-
tion.

e See how a new construct works in a fully general setting.

e Caveat: No guarantee the new construct will interact well with other
A-calculus extensions!

What is the A-calculus analogue of the halting problem?

CSE505 12

Multiple Arguments

Simulate multiple arguments to a function via higher-order functions.
A@1, 22).(21 22) becomes Ax1.Aza.(21 X2)

Technique known as currying, after the logician Haskell Curry.

CSE505 13

Church Booleans (cont.)

A boolean value is a choice between two alternatives.

o tru = M.ASt
o fls = MAfS

What would “or” look like?

What would “not” look like?

Are these booleans any less “real” than booleans in traditional program-
ming languages?

e What advantages do these booleans have?
e What disadvantages do they have?

CSE505 15

Church Booleans

A boolean value is a choice between two alternatives.
o tru = M.ASft
o fls = AMAf.f
A conditional “executes” the choice: ifthenelse = Ab.At.\e.bt e

e ifthenelse tru v w —s
o truv w —

o (Afv)w—
v

and =)\bl.)\bg.ifthenelse b1 b2 fls =)\bl.)\bg.bl b2 fls

e and tru fls —
e tru fls fls —

o (Af.fls) fls
o fls

CSE505 14

Church Numerals

Define numbers in unary, via “zero” and “successor” (Peano arithmetic).

® 7ero = \S.\z2.2
e one = As.\z.S z;
o two = As.\z.5(s 2);

The successor function just “adds another s”.

o succ = A\n.As.Az.s(n s z)
® succ one —

e As.Az.s(one s z) =

o As.Az.5((As.Az.5 2) s 2)

How would “plus” be defined?

CSE505 16

Recursion
Surprisingly, recursion can be encoded, without any additional mecha-
nism! [t’s mind-bending, but here’s some intuition:

Start with factorial.
e fact = A n. if n—=0 then 1 else n * fact(n-1)

Replace recursive references with a call to an extra parameter.
o factf = A f A n. if n-—0 then 1 else n * f(n-1)

[teratively define partial factorial functions.

e fact0 = factf \z.x
e factl = factf fact0
e fact2 = factf factl

The function factoo is equivalent to fact.

CSE505 17

Recursion (cont.)

The fixpoint (Y) combinator performs the transformations of the previous
slide.

fix = Ag.(Af-g(f [))(Af.9(f [))
o (Af.g(f f)) corresponds to the transformation of factf to factff.
o (Afg(f 1)Af.g(f f)) corresponds to the call (factff factff).

This version only works under lazy evaluation; the call-by-value version
is a little hairier.

CSE505 19

Recursion (cont.)

fact = A n. if n-—0 then 1 else n * fact(n-1)
factf = A f. A n. if n—0 then 1 else n * f(n-1)

Let’s play a similar trick on f to the one we played on fact.
o factff = A f. A n. if n—0 then 1 else n * (f f)(n-1)

Alternatively, let’s make the change “non-invasively.”

o factff = A f. factf (f f)
Now pass factff to itself!

Claim: factff factff = fact

o ((factff factff) 0) works trivially.
o ((factff factff) n) = (n * ((factff factff) n-1))

Notice the two uses of self-application!

CSE505

Recursion Example
fix = Ag.(\L9(f A9/ £)
factf = A f. A n. if n-—0 then 1 else n * f(n-1)
Claim: fix factf = fact
Let h = (Af.factf(f f))

e fix factf 0 —

o (Affactf(f f))Affactf(f £))0 —
o (factf (h h)) 0 —

(A n. if n—0 then L elsen * (h h)(n-1)) 0 —

if 0-0 then 1 else 0 * (h h)(0-1) —
if true then 1 else 0 * (h h)(0-1) —
o1

CSE505

18

20

Recursion Example (cont.)

fix = Ag.(Af-g(f f))(Afg(f f))
factf = A f. A n. if n—0 then 1 else n * f(n-1)
Let h = (Af.factf(f f))

o fix factf 1 —

o (Af.factf(f f))(A\ffactf(f f))1 —
o (factf (hh)) 1 —

(An. if n—0 then 1elsen * (h h)(n-1)) 1 —
if 1=0 then 1 else 1 * (h h)(1-1) —
1% (h h)(1-1) =

1*¥1 —

o1

CSE505 21

Operational Semantics
The “meaning” of a term is the value (if any) that it reduces to (along
with the sequence of steps to get there).
Define an abstract machine that “computes” the value of any term.

A state of the machine consists of the term being evaluated, as well as
any other auxiliary information necessary.

The transition relation is defined by a set of inference rules:

<premise, > <premise,, >
<conclusion>

“if <premise;>,. .. ,<premise,> hold, then so does <conclusion>".

CSE505 23

Values

e 11— x
Az.e
€1 €2
Some terms are in normal form, but don’t make semantic sense.

o z (Az.x)

The subset of normal-form terms that “make semantic sense” are called
values.

Values are the legal results of computations. This is a language-specific
notion.

What should the values be for the A-calculus?

CSE505 22

Call-by-Value Semantics

Syntax:
e T
Az.e
€1 €2
) Az.e

Structural (“small-step”) Operational Semantics:

(A\z.€)v — [z — vle (E-AppRed)

e — €] /
N S (E-App2)

e1 eg — €} e (E-Appl)

CSE505 24

An Example Derivation

61—)6’1

li
(B-Appl) —&=—=€— (E-App2)

(E-AppRed) ve —uve

(Az.e)v — [z — v]e e1 es —> €] e

A derivation tree defines one step of the machine.

(E-AppRed)

(Az.z)(Az.(z) — (Az.(T 7)) (BE-Appl)

02.2)(Oa2) Oz 2)))e) — Oaa)(Oa.(z 2))a) - PP2)
Derive reduction steps until reaching a normal form.

Stuck Expressions

61—)6’1

li
(B-Appl) —€=—=-€—; (E-App2)

(F-AppRed) ve —ve

(Az.e)v — [z — v]e e1 es —> €] es

An expression e is stuck if e is not a value, but e cannot take a step (i.e.
a derivation cannot be found).

stuck T
stuck e

v stuck

Grammar is deduced by case analysis of the syntax

e x cannot take a step
e Az.eis a value
o (eg e9) : each e; either can take a step, is stuck, or is a value

CSE505 27

Call-by-need Semantics?

Syntax:
e x
Azx.e
€1 €9
v Ax.e
Structural Operational Semantics:
CSE505 26

Eventually Stuck Expressions

61—)6’1

li
(E-Appl) —&—=€—; (E-App2)

(F-AppRed) ve —ve

(Az.e)v — [z — v]e e1 es —> €] es

. . . * .
An expression e is eventually stuck if e — €’ and €’ is stuck.

o (Az1.29)(A\z.2)

What is the grammar representing eventually stuck expressions?

What do stuck and eventually stuck expressions correspond to in “real”
programming languages?

CSE505 28

Booleans

Syntax:

e — x
A\Z.e
€1 €2
true
false
if e; then es else e

v = dx.e

CSE505 29

Booleans (cont.)

What is the grammar of stuck expressions?

stuck 11— =z
stuck e
v stuck

CSE505 31

Operational Semantics of Booleans

(Az.e)v — [z — v]e

(E-AppRed)

61—)6’1

7
€1 e2 —> €; ez

(E-Appl)

/
Qe/ (E-App2)

ve —ve

CSE505

30

