
CSE 505, Fall 2003, Assignment 2
Due: 28 October 2003, 10:30AM (firm)

1. (Semantics of Propositional Formulas)
Here is abstract syntax for truth-tables (t) and propositional formulas (f):

t ::= · | t, x = c
f ::= c | x | ¬f | f ∧ f | f ∨ f | f → f | f ↔ f
c ::= true | false

Here is an informal semantics: A truth-table maps variables to constants. The “empty” table maps
every variable to false. Given a truth-table, a formula evaluates to true or false. A constant formula
evaluates to itself. The formula x is evaluated using the truth-table in the obvious way. The logical
connectives are: ¬ for not (true when subformula is false), ∧ for and (true when both subformulas are
true), ∨ for or (true when either subformula is true), → for implies (true if the left subformula is false
or the right subformula is true), and ↔ (true if the subformulas evaluate to the same result).

The code provided to you implements the following concrete syntax : A file contains one truth-table
followed by one formula. The truth-table is surrounded in parentheses and entries are not separated by
commas. Examples include (x=#t y=#f) and (), where the latter is the empty table. Uses of binary
operators must be surrounded by parentheses whereas constants, variables, and negation must not be
surrounded by parentheses. Constants are written #t (true) or #f false. Operators are written NOT,
AND, OR, -->, or <--> (for ¬,∧,∨,→,↔ respectively). Variables are one or more lower-case letters. For
example, the table ·, x = true, y = false and formula ¬((x ↔ (y ∧ true)) ∨ (y → false) are written
as:

(x = #t y=#f)
NOT ((x <--> (y AND #t)) OR (y --> #f))

(a) Give a large-step operational semantics for propositional formulas.

(b) Implement a “large-step operational semantics” interpreter in O’Caml by changing the definition
of Main.interpret. Your function should return True or False (the abstract syntax for the
constants).

(c) Implement a “denotational” translation from propositional formulas and truth tables into O’Caml
by changing the definitions of Main.denote_formula and Main.denote_table. The return type
of Main.denote_table should be string -> bool (i.e., a function from O’Caml string to O’Caml
booleans). The return type of Main.denote_formula should be (string->bool)->bool. The
result of your denotation should not refer to any abstract syntax (except variables are still strings).

Note: Change only main.ml and observe the comment “(*Do not change anything below here*)”

2. (Nondeterministic IMP)
We add a new statement form to IMP, written s1 ‖ s2. We provide two different semantics.

Here is Extension A:

A1
H ; s1 → H ′ ; s′1

H ; s1 ‖ s2 → H ′ ; s′1 ‖ s2

A2
H ; s2 → H ′ ; s′2

H ; s1 ‖ s2 → H ′ ; s1 ‖ s′2

A3

H ; skip ‖ skip → H ; skip

Here is Extension B :

B1
H ; s1 → H ′ ; s′1

H ; s1 ‖ s2 → H ′ ; s′1 ‖ s2

B2

H ; s1 ‖ s2 → H ; s2 ‖ s1

B3

H ; skip ‖ s2 → H ; s2

1

(a) Prove that Extension A makes IMP nondeterministic. Give full derivations. (That is, prove there
exists a program s where s can produce a heap where ans has two different values or there exists
an s that can terminate or not terminate.)

(b) Prove that Extension B makes IMP nondeterministic. You may give full derivations or just a
sequence of H; s pairs.

(c) Prove or disprove: For all H and s, if H; s might diverge under Extension A (i.e., there exists an
infinite sequence H; s → H2; s2;→ H3; s3; . . .), then H; s might diverge under Extension B.

(d) Prove or disprove: For all H and s, if H; s →∗ H ′; skip under Extension A, then H; s →∗ H ′; skip
under extension B. (I.e., there exists an execution sequence producing the same heap. We are not
asking if extension B must always produce H ′.)

(e) Prove or disprove: For all H and s, if H; s might diverge under Extension B, then H; s might
diverge under Extension A.

(f) Prove or disprove: For all H and s, if H ; s →∗ H ′ ; skip under Extension B, then
H ; s →∗ H ′ ; skip under Extension A.

Hints:

• You can use the same key lemma for parts (c) and (d). These problems are not easy.

• Part (f) is by far the most difficult. Think of it as extra credit. Attempt it only after completing
the rest of the assignment. Use this auxiliary judgment and the following two lemmas (which you
should prove).

r1

R(s, s)

r2
R(s1, s2)

R(s1; s, s2; s)

r3
R(s1, s3) R(s2, s4)

R(s1 ‖ s2, s3 ‖ s4)

r4
R(s1, s4) R(s2, s3)

R(s1 ‖ s2, s3 ‖ s4)

r5
R(s1, s2)

R(skip ‖ s1, s2)

Lemma 1: If R(s, skip), then H ; s →∗ H ; skip under Extension A.
Lemma 2: If R(s1, s2) and H ; s2 → H ′ ; s′2 under Extension B, then there exists an s′1 such
that H ; s1 →∗ H ′ ; s′1 under Extension A and R(s′1, s

′
2).

2

