CSE 505, Fall 2003, Assignment 4
Due: 25 November 2003, 10:30AM (firm)

1. (Typed Currying)
(a) In System F (with pairs), provide an e; and e such that
ke i Vag Vag Vas.((ap x ag) — as) — a1 — as — ag

and
b oeg i Vag Vag Vag. (o — ag — az) — (a1 xaz) — ag

Hint: e; will return a curried version of its input function. es will return an uncurried version of
its input. For all e3, if es [11][m2][13] (e1 [11][m2][73] e3) typechecks, then it is equivalent to es. (In
other words, e; and ey are inverses of each other.) These are “free theorems” indicating that any
correct solution will have certain behavior.

(b) In O’Caml, write functions curry and uncurry equivalent to e; and e; above. (Note in O’Caml
* binds tighter than ->, so int*int->int means (int*int)->int.)

(¢) In O’Caml, write functions not_curry and not_uncurry that have the same types as curry and
uncurry but are not equivalent to them. (You may want to give explicit types to the function
arguments so the type-checker does not infer more general types, though there are solutions that
do not require doing this.)

2. (Picking on Java) This program type-checks and runs:

class C {
public static void f(Object x, Object arr[]) {
arr[0] = x;
}
public static void main(String args([]) {
Object o = new Object();
C [a = new C[10];
f(o, a);
}
}

(a) For this program, where does the type-checker use subsumption? From what type to what type?
What is Java’s subtyping rule for arrays?

(b) Does this program execute any downcasts when it runs? What happens when it runs?

(¢) Informally, what is the semantics of array-update in Java? (Start your answer with, “Array
update takes an array-object a, an index i, and an object o...”. Discuss what exceptions might
be thrown under what conditions and what occurs if no exceptions are thrown.)

(d) Is it possible to compile a Java program without run-time type information, even if the program
has no downcasts, method overriding, or reflection? (Note that compilation must preserve the
behavior you described in the previous question.)

3. (Strong Evaluator Interfaces) For this problem, we put Dan’s homework-3 implementations of typecheck
and interpret in a file impl.ml and expose only the interface in impl.mli. Do not change typecheck
or interpret, but use them so that you actually write very little code. Do not change impl.ml%.

Our goal is to prevent clients (code in other files) from being able to cause the Impl.RunTimeError
exception to be raised. We do this by making sure (nonrecursive) calls to Impl.interpret are with
mt_env and prog such that prog typechecks. Part of our implmentation is “safe” if it cannot violate
this goal.

Ignore the files with “2” in their name until part (e).

(a)

(b)

Implement interpretl such that it raises TypeError if its input does not type-check and returns
the evaluation of its argument otherwise. This is safe, but requires type-checking a program every
time we run it.

Implement typecheck2 and interpret2 such that typecheck2 returns what typecheck mt_ctxt
does, and interpret?2 returns the evaluation of its argument, but interpret?2 raises TypeError
iff a pointer-equal STLC program has not been previously passed to typecheck2 and successfully
type-checked. (You will need mutable state in impl.ml to do this. Given programs z and y,
compare them with pointer-equality: = == y.) This is safe, but requires state and can leak
memory.

Implement typecheck3 to do this: If the program doesn’t type-check raise TypeError. If it does
type-check, return a thunk that when invoked returns the evaluation of the program that has
been type-checked. This is safe.

Implement typecheck4 to raise TypeError if the program doesn’t type-check and return its ar-
gument if it does type-check. Implement interpret4 to behave just like interpret. This is safe.
(To see why, look at the type of these bindings in impl.mli.)

Build “version 2” by copying your solutions from impl.ml to impl2.ml. Version 2 is different in
only these ways: (1) The abstract syntax for application is Apply(exp ref,exp), i.e., the first
part is mutable. (2) We don’t bother with a lexer or parser.

For each of interpretl, interpret2, the result of typecheck3 e, and interpret4, do the
following: If the function is still safe, explain why. If it is not, put code in adversary.ml that will
cause Impl2.RunTimeError to be raised when calling the function. (Just build abstract syntax
“manually” rather than parsing a program. See adversary.ml for details.)

What to turn in:

Written or typed solutions to la, 2, and any parts of 3e that are still safe.
A file probleml.ml with bindings for curry, uncurry, not_curry, and not_uncurry.
A file impl.m1 which has your additions for problems 3a—3d.

A file adversary.ml which has your additions for problem 3e.

