
'

&

$

%

CSE 505: Concepts of Programming
Languages

Dan Grossman

Fall 2003

Lecture 10— Intro to polmorphism; Subtyping

Dan Grossman CSE505 Fall 2003, Lecture 10 1

'

&

$

%

Where are we

• Midterm next Tuesday: up through fix e, but not

termination of STλC. Open book and notes.

• We’ve used λ calculus to model functions and types to

prevent stuck states.

• We’ve extended STλC with primitives, pairs, sums,

records, fix, etc.

• Haven’t done recursive types (e.g., lists) or mutation

or exceptions yet.

• But first let’s be less restrictive without affecting

run-time behavior

Dan Grossman CSE505 Fall 2003, Lecture 10 2

'

&

$

%

Being Less Restrictive

“Will a λ term get stuck?” is Turing complete, so a sound,

decidable type system can always be made less restrictive.

An “uninteresting” rule that is sound but not

“admissable”:
Γ ` e1 : τ

Γ ` if true then e1 else e2 : τ

We’ll study ways to give one term many types

(“polymorphism”).

Fact: The version of STλC with explicit argument types

(λx : τ . e) has no polymorphism:

If Γ ` e : τ1 and Γ ` e : τ2, then τ1 = τ2.

Dan Grossman CSE505 Fall 2003, Lecture 10 3

'

&

$

%

Explicit Types and Non-Polymorphism

Fact: Previous fact holds for all our extensions (assuming

all binding occurrences have explicit types)

Without explicit types, · ` λx. x : int → int and

· ` λx. x : (int → int) → (int → int).

But we still need “two copies” of λx. x to use it at two

types – type system is (still) preventing abstracting

common parts.

From now on, assume the explicit-type version...

Dan Grossman CSE505 Fall 2003, Lecture 10 4

'

&

$

%

My least favorite PL word

Polymorphism means many things. . .

• Ad hoc polymorphism: e1 + e2 in SML<C<Java<C++.

• Ad hoc, cont’d: Maybe e1 and e2 can have different

run-time types and we choose the + based on them.

• Parametric polymorphism: e.g., Γ ` λx. x : ∀α.α → α

or with explicit types: Γ ` Λα. λx : α. x : ∀α.α → α

(which “compiles” i.e. “erases” to λx. x)

• Subtype polymorphism: new Vector().add(new C()) is

legal Java because new C() has types Object and C

. . . and nothing. (I prefer “static overloading” “dynamic

dispatch” “type abstraction” and “subtyping”.)

Dan Grossman CSE505 Fall 2003, Lecture 10 5

'

&

$

%

Our plan

• Today: Subtyping, preferably without coercions

• Then: Parametric polymorphism (∀) and maybe

first-class ADTs (∃) and recursive types (µ).

(All use type variables (α).)

• Later: Dynamic-dispatch, inheritance vs. subtyping,

etc. (Concepts in OO programming)

Today’s Motto: Subtyping is not a matter of opinion!

Dan Grossman CSE505 Fall 2003, Lecture 10 6

'

&

$

%

Record types
We’ll use records to motivate subtyping:

e ::= . . . | {l1 = e1, . . . , ln = en} | e.l
τ ::= . . . | {l1 : τ1, . . . , ln : τn}
v ::= . . . | {l1 = v1, . . . , ln = vn}

ei → e′
i

{l1 = v1, . . . , li−1 = vi−1, li = ei, . . . , ln = en}
→ {l1 = v1, . . . , li−1 = vi−1, li = e′

i, . . . , ln = en}

{l1 = v1, . . . , ln = vn}.li → vi

Γ ` e1 : τ1 . . . Γ ` en : τn labels distinct

Γ ` {l1 = e1, . . . , ln = en} : {l1 : τ1, . . . , ln : τn}

Γ ` e : {l1 : τ1, . . . , ln : τn} 1 ≤ i ≤ n

Γ ` e.li : τi

Dan Grossman CSE505 Fall 2003, Lecture 10 7

'

&

$

%

Should this typecheck?

(λx : {l1:int, l2:int}. x.l1 + x.l2){l1=3, l2=4, l3=5}

Right now, it doesn’t.

Our operational semantics won’t get stuck.

Suggests width subtyping :

{l1:τ1, . . . , ln:τn, l:τ} ≤ {l1:τ1, . . . , ln:τn}

τ1 ≤ τ2 τ2 ≤ τ3

τ1 ≤ τ3

And our one one new type-checking rule: Subsumption

Γ ` e : τ τ ≤ τ ′

Γ ` e : τ ′

Dan Grossman CSE505 Fall 2003, Lecture 10 8

'

&

$

%

Permutation

Our semantics for projection doesn’t care about position...

So why not let {l1=3, l2=4} have type {l2:int, l1:int}?

{l1:τ1, . . . , li−1:τi−1, li:τi, . . . , ln:τn} ≤
{l1:τ1, . . . , li:τi, li−1:τi−1, . . . , ln:τn}

Example with width: Show

· ` {l1=7, l2=8, l3=9} : {l2:int, l1:int}.

There are multiple ways (subsumptions or transitivity), so

it’s unclear what an (efficient, sound, complete) algorithm

should be. But they exist.

Dan Grossman CSE505 Fall 2003, Lecture 10 9

'

&

$

%

Digression: Efficiency

With our semantics, width and permutation subtyping

make perfect sense.

But it would be nice to compile e.l down to:

1. evaluate e to a record stored at an address a

2. load a into a register r1

3. load field l from a fixed offset (e.g., 4) into r2

Many type systems are engineered to make this easy for

compiler writers.

Makes restrictions seem odd if you do not know techniques

for implementing high-level languages. (CSE501)

Dan Grossman CSE505 Fall 2003, Lecture 10 10

'

&

$

%

Digression continued

With width subtyping, the strategy is easy. (No problem.)

With permutation subtyping, it’s easy but have to

“alphabetize”.

With both, it’s not easy. . .

f1 : {l1 : int} → int f2 : {l2 : int} → int

x1 = {l1 = 0, l2 = 0} x2 = {l2 = 0, l3 = 0}
f1(x1) f2(x1) f2(x2)

Can use dictionary-passing and maybe optimize away

(some) lookups.

Named types avoid this, but make code less flexible.

Dan Grossman CSE505 Fall 2003, Lecture 10 11

'

&

$

%

Depth Subtyping

With just records of ints, we miss another opportunity:

(λx : {l1:{l3:int}, l2:int}. x.l1.l3 + x.l2)
{l1={l3 = 3, l4 = 9}, l2=4}

Again, does not type-check but does not get stuck.

τi ≤ τ ′
i

{l1:τ1, . . . , li:τi, . . . , ln:τn} ≤ {l1:τ1, . . . , li:τ
′
i , . . . , ln:τn}

Note: With permutation subtyping could just allow depth

on left-most field.

Note: Soundness of this rule depends crucially on fields

being immutable. (We will get to this point.)

Dan Grossman CSE505 Fall 2003, Lecture 10 12

'

&

$

%

Function subtyping

Given our rich subtyping on records, how do we extend it

to other types, namely τ1 → τ2. For example, with width

subtyping we’d like

int → {l1:int, l2:int} ≤ int → {l1:int}.

???

τ1 → τ2 ≤ τ3 → τ4

For a function to have type τ3 → τ4 it must return

something of type τ4 (including subtypes) whenever given

something of type τ3 (including subtypes). A function

assuming less than τ3 will do, but not one assuming more.

Dan Grossman CSE505 Fall 2003, Lecture 10 13

'

&

$

%

Function subtyping, cont’d

τ3 ≤ τ1 τ2 ≤ τ4

τ1 → τ2 ≤ τ3 → τ4

Also want:
τ ≤ τ

Example: λx : {l1:int, l2:int}. {l1 = x.l2, l2 = x.l1} can

have type {l1:int, l2:int, l3:int} → {l1:int}
but not {l1:int} → {l1:int}.

We say function types are contravariant in their argument

and covariant in their result. (Depth subtyping means

immutable records are covariant in their fields.)

We say function types are contravariant in their argument

with our eyes closed, on one foot, IN OUR SLEEP, and

we never let anybody tell us otherwise. Ever.

Dan Grossman CSE505 Fall 2003, Lecture 10 14

'

&

$

%

Maintaining soundness
Our Preservation and Progress Lemmas still work in the

presence of subsumption. (So in theory, any subtyping mistakes

would be caught when trying to prove soundness!)

In fact, it seems too easy: induction on typing derivations

makes the subsumption case easy.

That’s because Canonical Forms is where the action is:

• If · ` v : {l1:τ1, . . . , ln:τn}, then v is a record with

fields l1, . . . , ln.

• If · ` v : τ1 → τ2, then v is a function.

Have to use induction on the typing derivation (may end with

many subsumptions) and induction on the subtyping derivation

(e.g., “going up the derivation” only adds fields)

Dan Grossman CSE505 Fall 2003, Lecture 10 15

'

&

$

%

A Matter of Opinion?

If subsumption makes well-typed terms get stuck, it is

wrong.

We might allow less subsumption (for efficiency), but we

shall not allow more than is sound.

But we have been discussing “subset semantics” in which

e : τ and τ ≤ τ ′ means e is a τ ′. (There are “fewer”

values of type τ than of type τ ′, but not really.)

It is very tempting to go beyond this, but you must be very

careful. . .

But first we need to emphasize a really nice property we

had: Types never affected run-time behavior.

Dan Grossman CSE505 Fall 2003, Lecture 10 16

'

&

$

%

Erasure
I.e., A program type-checks or does not. If it does, it evaluates

just like in the untyped λ-calculus. More formally, we have:

• Our language with types (e.g., λx : τ . e, inlτ1+τ2(e),

etc.) and a semantics

• Our language without types (e.g., λx. e, inl(e), etc.) and

a different (but very similar) semantics

• An erasure metafunction from first language to second

• An equivalence theorem: Erasure commutes with

evaluation.

This useful (for reasoning and efficiency) fact will be less

obvious (but true) with parametric polymorphism.

Dan Grossman CSE505 Fall 2003, Lecture 10 17

'

&

$

%

Coercion Semantics

Wouldn’t it be great if. . .

• int ≤ float

• int ≤ {l1:int}

• τ ≤ string

• we could “overload the cast operator”

For these proposed τ ≤ τ ′ relationships, we need a

run-time action to turn a τ into a τ ′. Called a coercion.

Programmers could use float_of_int and similar but

they whine about it.

Dan Grossman CSE505 Fall 2003, Lecture 10 18

'

&

$

%

Implementing Coercions

If coercion C (e.g., float_of_int) “witnesses” τ ≤ τ ′ (e.g.,

int ≤ float), then we insert C when using τ ≤ τ ′ with

subsumption.

So our translation to the untyped semantics depends on where

we use subsumption. So its really from typing derivations to

programs.

And typing derivations aren’t deterministic (uh-oh).

Example 1: Suppose int ≤ float and τ ≤ string. Consider

· ` print string(34) : unit.

Example 2: Suppose int ≤ {l1:int}. Consider 34 == 34.

Dan Grossman CSE505 Fall 2003, Lecture 10 19

'

&

$

%

Coherence

Coercions need to be coherent, meaning they don’t have

these problems. (More formally, programs are deterministic

even though type checking is not—any typing derivation

for e translates to an equivalent program.)

You can also make (complicated) rules about where

subsumption occurs and which subtyping rules take

precedence.

It’s a mess. . .

Dan Grossman CSE505 Fall 2003, Lecture 10 20

'

&

$

%

C++

Semi-Example 3: Multiple inheritance a la C++.

class C2 {};

class C3 {};

class C1 : public C2, public C3 {};

class D {

public: int f(class C2) { return 0; }

int f(class C3) { return 1; }

};

int main() { return D().f(C1()); }

Note: A compile-time error “ambiguous call”

Note: The first C++ I’ve written in a long time.

Note: Same in Java with interfaces (“reference is ambiguous”)

Dan Grossman CSE505 Fall 2003, Lecture 10 21

'

&

$

%

Where are we

• “Subset” subtyping allows “upcasts”

• “Coercive subtyping” allows casts with run-time effect

• What about “downcasts”?

That is, should we have something like:

if_hastype(τ ,e1) then x.e2 else e3

(Roughly, if at run-time e1 has type τ (or a subtype),

then bind it to x and evaluate e2. Else evaluate e3.

Avoids having exceptions.)

Dan Grossman CSE505 Fall 2003, Lecture 10 22

'

&

$

%

Downcasts
I can’t deny downcasts exist, but here are some bad things

about them:

• Types don’t erase – you need to represent τ and e1’s

type at run-time. (Hidden data fields.)

• Breaks abstractions: Before, passing

{l1 = 3, l2 = 4} to a function taking {l1 : int} hid

the l2 field.

• Use ML-style datatypes – now programmer decides

which data should have tags.

• Use parametric polymorphism – the right way to do

container types (not downcasting results)

Dan Grossman CSE505 Fall 2003, Lecture 10 23

