CSE 505: Concepts of Programming Languages

Dan Grossman
Fall 2003
Lecture 3- Operational Semantics for IMP

Where we are

- Done: IMP syntax, structural induction, OCaml basics
- Today: IMP operational semantics
- Tonight: You could finish homework 1

Review

IMP's abstract syntax is defined inductively:

$$
\begin{aligned}
s & ::=\text { skip }|x:=e| s ; s \mid \text { if } e s s \mid \text { while } e s \\
e & ::=c|x| e+e \mid e * e \\
(c & \in\{\ldots,-2,-1,0,1,2, \ldots\}) \\
(x & \left.\in\left\{x_{1}, x_{2}, \ldots, y_{1}, y_{2}, \ldots, z_{1}, z_{2}, \ldots, \ldots\right\}\right)
\end{aligned}
$$

We haven't said what programs mean yet! (Syntax is boring)

But we have a social understanding about variables and control flow

Expression semantics

\[

\]

ADD

$$
\frac{H ; e_{1} \Downarrow c_{1} \quad H ; e_{2} \Downarrow c_{2}}{H ; e_{1}+e_{2} \Downarrow c_{1}+c_{2}}
$$

MULT

$$
H ; e_{1} \Downarrow c_{1} \quad H ; e_{2} \Downarrow c_{2}
$$

$$
H ; e_{1} * e_{2} \Downarrow c_{1} * c_{2}
$$

"pronounce" as proofs (upward) or evaluations (downward)

Expression semantics cont'd

$$
\boldsymbol{H}(\boldsymbol{x})=\left\{\begin{array}{rll}
\boldsymbol{c} & \text { if } & \boldsymbol{H}=\boldsymbol{H}, \boldsymbol{x} \mapsto \boldsymbol{c} \\
\boldsymbol{H}^{\prime}(\boldsymbol{x}) & \text { if } & \boldsymbol{H}=\boldsymbol{H}^{\prime}, \boldsymbol{y} \mapsto \boldsymbol{c}^{\prime} \\
0 & \text { if } & \boldsymbol{H}=
\end{array}\right.
$$

Last case avoids "errors" (makes function total)
We have rule schemas ("rules"). We instantiate a rule by replacing metavariables appropriately.

Instantiating rules

Example instantiation:

$$
\frac{\cdot, y \mapsto 4 ; 3+y \Downarrow 7 \quad \cdot, y \mapsto 4 ; 5 \Downarrow 5}{\cdot, y \mapsto 4 ;(3+y)+5 \Downarrow 12}
$$

Instantiates:

$$
\frac{H ; e_{1} \Downarrow c_{1} \quad H ; e_{2} \Downarrow c_{2}}{H ; e_{1}+e_{2} \Downarrow c_{1}+c_{2}}
$$

with $H=\cdot, y \mapsto 4, e_{1}=(3+y), c_{1}=7, e_{2}=5$, $c_{2}=5$

Derivations

A (complete) derivation is a tree of instantiations with axioms at the leaves.

Example:

$$
\frac{\cdot, y \mapsto 4 ; 3 \Downarrow 3 \quad \cdot, y \mapsto 4 ; y \Downarrow 4}{\cdot, y \mapsto 4 ; 3+y \Downarrow 7} \quad \overline{\cdot, y \mapsto 4 ; 5 \Downarrow 5}
$$

So $\boldsymbol{H} ; \boldsymbol{e} \Downarrow \boldsymbol{c}$ if there exists a derivation with $\boldsymbol{H} ; \boldsymbol{e} \Downarrow \boldsymbol{c}$ at the root.

Some theorems

- Progress: For all \boldsymbol{H} and \boldsymbol{e}, there exists a \boldsymbol{c} such that $\boldsymbol{H} ; \boldsymbol{e} \Downarrow \boldsymbol{c}$.
- Determinacy: For all \boldsymbol{H} and \boldsymbol{e}, there is at most one \boldsymbol{c} such that $\boldsymbol{H} ; \boldsymbol{e} \Downarrow \boldsymbol{c}$.

We rigged it that way...
what would division, undefined-variables, or gettime() do?
Note: Our semantics is syntax-directed.

Some theory comments

Inference rules are PL notation for some standard math. . .

- " \boldsymbol{H} and \boldsymbol{e} evaluating to \boldsymbol{c} " is a relation on triples of the form $(\boldsymbol{H}, \boldsymbol{e}, \boldsymbol{c})($ i.e., $\boldsymbol{H} ; \boldsymbol{e} \Downarrow \boldsymbol{c})$
- Relation defined inductively on the derivation height
- Can define syntax the same way:

$$
\begin{array}{cc}
c \in E & x \in E \\
\frac{e_{1} \in E \quad e_{2} \in E}{e_{1}+e_{2} \in E} & \frac{e_{1} \in E \quad e_{2} \in E}{e_{1} * e_{2} \in E}
\end{array}
$$

Less metanotation for you, but not what "we" do

Statement semantics

$$
H_{1} ; s_{1} \rightarrow H_{2} ; s_{2}
$$

ASSIGN
$\boldsymbol{H} ; \boldsymbol{e} \Downarrow \boldsymbol{c}$
$\boldsymbol{H} ; \boldsymbol{x}:=e \rightarrow \boldsymbol{H}, \boldsymbol{x} \mapsto \boldsymbol{c}$; skip

SEQ1
$H ;$ skip; $s \rightarrow H ; s$
IF1

$$
\frac{H ; e \Downarrow c \quad c>0}{H ; \text { if } e s_{1} s_{2} \rightarrow H ; s_{1}}
$$

SEQ2

$$
\frac{H ; s_{1} \rightarrow \boldsymbol{H}^{\prime} ; s_{1}^{\prime}}{\boldsymbol{H} ; s_{1} ; s_{2} \rightarrow \boldsymbol{H}^{\prime} ; s_{1}^{\prime} ; s_{2}}
$$

IF2

$$
\frac{H ; e \Downarrow c \quad c \leq 0}{H ; \text { if } e s_{1} s_{2} \rightarrow H ; s_{2}}
$$

Statement semantics cont'd

What about while es (do s and loop if $e>0$)?
WHILE
H; while $e s \rightarrow H$; if $e(s$; while $e s)$ skip
Many other equivalent definitions possible

Program semantics

We defined $\boldsymbol{H} ; s \rightarrow \boldsymbol{H}^{\prime} ; s^{\prime}$, but what does " s " mean/do?

Our machine iterates: $\boldsymbol{H}_{1} ; s_{1} \rightarrow \boldsymbol{H}_{2} ; s_{2} \rightarrow \boldsymbol{H}_{3} ; s_{3} \ldots$
Let $\boldsymbol{H}_{\mathbf{1}} ; \boldsymbol{s}_{\mathbf{1}} \rightarrow^{*} \boldsymbol{H}_{\mathbf{2}} ; \boldsymbol{s}_{\mathbf{2}}$ mean "becomes after some number of steps" and pick a special "answer" variable ans

The program s produces \boldsymbol{c} if $\cdot ; s \rightarrow^{*} \boldsymbol{H}$; skip and $\boldsymbol{H}(a n s)=c$

Does every s produce a \boldsymbol{c} ?

Example program execution

$x:=3 ;(y:=1$; while $x(y:=y * x ; x:=x-1))$
(Let's write some of the state sequence. You can justify each step with a full derivation. Let $s=(y:=y * x ; x:=x-1)$.)

$$
\begin{aligned}
& \cdot ; x:=3 ; y:=1 ; \text { while } x s \\
\rightarrow & \cdot, x \mapsto 3 ; \text { skip; } y:=1 ; \text { while } x s \\
\rightarrow & \cdot, x \mapsto 3 ; y:=1 ; \text { while } x s \\
\rightarrow^{2} & \cdot, x \mapsto 3, y \mapsto 1 ; \text { while } x s \\
\rightarrow & \cdot, x \mapsto 3, y \mapsto 1 ; \text { if } x(s ; \text { while } x s) \text { skip } \\
\rightarrow & \cdot, x \mapsto 3, y \mapsto 1 ; y:=y * x ; x:=x-1 ; \text { while } x s
\end{aligned}
$$

Continued...

$$
\begin{aligned}
& \rightarrow^{2} \quad, x \mapsto 3, y \mapsto 1, y \mapsto 3 ; x:=x-1 \text {; while } x s \\
& \rightarrow^{2} \quad \cdot, x \mapsto 3, y \mapsto 1, y \mapsto 3, x \mapsto 2 \text {; while } x s \\
& \rightarrow \quad \ldots, y \mapsto 3, x \mapsto 2 ; \text { if } x(s ; \text { while } x s) \text { skip } \\
& \cdots \\
& \rightarrow \quad \ldots, \ldots, y \mapsto 6, x \mapsto \mathbf{0} \text {; skip }
\end{aligned}
$$

Where we are

We have defined $\boldsymbol{H} ; \boldsymbol{e} \Downarrow \boldsymbol{c}$ and $\boldsymbol{H} ; s \rightarrow \boldsymbol{H}^{\prime} ; s^{\prime}$ and extended the latter to give s a meaning.

The way we did expressions is "large-step" or "natural".
The way we did statements is "small-step".
So now you have seen both.
Large-step does not distinguish errors and divergence.

Establishing Properties

We can prove a property of a terminating program by "running" it.

Example: Our last program terminates with \boldsymbol{x} holding $\mathbf{0}$.
We can prove a program diverges, i.e., for all \boldsymbol{H} and \boldsymbol{n}, $\cdot ; s \rightarrow^{n} \boldsymbol{H}$; skip cannot be derived.

Example: while 1 skip
By induction on n with stronger induction hypothesis: If we can derive $\cdot ; s \rightarrow^{n} \boldsymbol{H} ; s^{\prime}$ then s^{\prime} is while 1 skip or if 1 (skip; while 1 skip) skip or skip; while 1 skip.

More General Proofs

We can prove properties of executing all programs (satisfying another property)

Example: If \boldsymbol{H} and s have no negative constants and $\boldsymbol{H} ; \boldsymbol{s} \rightarrow^{*} \boldsymbol{H}^{\prime} ; \boldsymbol{s}^{\prime}$, then \boldsymbol{H}^{\prime} and \boldsymbol{s}^{\prime} have no negative constants.

Example: If for all \boldsymbol{H}, we know $\boldsymbol{s}_{\mathbf{1}}$ and $\boldsymbol{s}_{\mathbf{2}}$ terminate, then for all \boldsymbol{H}, we know $\boldsymbol{H} ;\left(s_{\mathbf{1}} ; \boldsymbol{s}_{\mathbf{2}}\right)$ terminates.

Even more general proofs to come

We defined the semantics.
Given our semantics, we established properties of programs and sets of programs.

More interesting is having multiple semantics-for what program states are they equivalent? (For what notion of equivalence?)

Or having a more abstract semantics (e.g., a type system) and asking if it is preserved under evaluation. (If e has type τ and \boldsymbol{e} becomes \boldsymbol{e}^{\prime}, does \boldsymbol{e}^{\prime} have type $\boldsymbol{\tau}$?)

But first a one-lecture detour to "denotational" semantics.

