CSE 505: Concepts of Programming Languages

Dan Grossman

Fall 2003
Lecture 4- "Denotational" Semantics for IMP
(Bonus: Connection to reality via packet filters)

Today's Plan

- Finish example proofs
- Motivate doing this "obvious" stuff via "wrong" rules
- "Denotational" semantics via translation to ML
- Real-world example: packet filters

Goal: Saying "Let's consider the trade-offs of using a denotational semantics to achieve a high-performance, extensible operating system" with a straight face.

Example 1 summary

Theorem: If noneg (\boldsymbol{H}), $\boldsymbol{n o n e g}(s)$, and $\boldsymbol{H} ; s \rightarrow^{n} \boldsymbol{H}^{\prime} ; s^{\prime}$, then noneg (\boldsymbol{H}^{\prime}) and noneg (s^{\prime}).

Proof: By induction on $\boldsymbol{n} . \boldsymbol{n}=\mathbf{0}$ is immediate. For $\boldsymbol{n}>\mathbf{0}$, use lemma: If noneg (\boldsymbol{H}), noneg (s), and $\boldsymbol{H} ; s \rightarrow \boldsymbol{H}^{\prime} ; s^{\prime}$, then noneg (\boldsymbol{H}^{\prime}) and noneg (s^{\prime}).

Proof: By induction on derivation of $\boldsymbol{H} ; s \rightarrow \boldsymbol{H}^{\prime} ; s^{\prime}$.
Consider bottom-most (last) rule used: Cases Seq1, If1, If2, and While straightforward.

Case Seq2 uses induction ($s=s_{\mathbf{1}} ; s_{\mathbf{2}}$ and $\boldsymbol{H} ; s_{\mathbf{1}} \rightarrow \boldsymbol{H}^{\prime} ; s_{1}^{\prime}$ via a shorter derivation).

Example 1 cont'd

Case Assign uses a lemma: If noneg (\boldsymbol{H}), noneg (e), and $\boldsymbol{H} ; \boldsymbol{e} \Downarrow \boldsymbol{c}$, then $\boldsymbol{n o n e g}(\boldsymbol{c})$. Proof: Induction on derivation. Plus and Times cases use induction and math facts.

Motivation: We preserved a nontrivial property of our program state. It would fail if we had

- Overly flexible rules, e.g.:

$$
\overline{H ; c \Downarrow c^{\prime}}
$$

- An "unsafe" language like C:

$$
\frac{H(x)=\left\{c_{0}, \ldots, c_{n-1}\right\} \quad H ; e \Downarrow c \quad c \geq n}{H ; x[e]:=e^{\prime} \rightarrow H^{\prime} ; s^{\prime}}
$$

Example 2

Theorem: If for all \boldsymbol{H}, we know $\boldsymbol{s}_{\mathbf{1}}$ and $\boldsymbol{s}_{\mathbf{2}}$ terminate, then for all \boldsymbol{H}, we know $\boldsymbol{H} ;\left(s_{1} ; s_{2}\right)$ terminates.

Seq Lemma: If $\boldsymbol{H} ; \boldsymbol{s}_{\mathbf{1}} \rightarrow^{\boldsymbol{n}} \boldsymbol{H}^{\prime} ; \boldsymbol{s}_{1}^{\prime}$, then
$\boldsymbol{H} ; s_{1} ; s_{2} \rightarrow^{n} \boldsymbol{H}^{\prime} ; s_{1}^{\prime} ; s_{2}$. Proof: Induction on \boldsymbol{n}.
Using lemma, theorem holds in $\boldsymbol{n}+\mathbf{1}+\boldsymbol{m}$ steps where $\boldsymbol{H} ; \boldsymbol{s}_{\mathbf{1}} \rightarrow^{\boldsymbol{n}} \boldsymbol{H}^{\prime}$; skip and $\boldsymbol{H}^{\prime} ; s_{2} \rightarrow^{m} \boldsymbol{H}^{\prime \prime}$; skip.

Motivation: Termination is often desirable. Can sometimes prove it for a sublanguage (e.g., while-free IMP programs) or for "YVIP".

A different approach

Operational semantics defines an interpreter, from abstract syntax to abstract syntax. Metalanguage is inference rules (slides) or OCaml (interp.ml).

Denotational semantics defines a compiler (translater), from abstract syntax to a different language with known semantics.

Target language is math, but we'll make it OCaml for now. Metalanguage is math or OCaml (we'll show both).

The basic idea

A heap is a math/ML function from strings to integers:
string \rightarrow int
An expression denotes a math/ML function from heaps to integers.

$$
\operatorname{den}(e):(\operatorname{string} \rightarrow i n t) \rightarrow i n t
$$

A statement denotes a math/ML function from heaps to heaps.

$$
\operatorname{den}(s):(\operatorname{string} \rightarrow i n t) \rightarrow(\operatorname{string} \rightarrow i n t)
$$

Now just define den in our metalanguage (math or ML), inductively over the source language.

Expressions

$$
\operatorname{den}(e):(\operatorname{string} \rightarrow i n t) \rightarrow i n t
$$

$$
\operatorname{den}(c) \quad=\text { fun } \mathrm{h} \rightarrow \mathrm{c}
$$

$$
\operatorname{den}(x) \quad=\text { fun } \mathrm{h} \rightarrow \mathrm{~h} \mathrm{x}
$$

$$
\operatorname{den}\left(e_{1}+e_{2}\right)=\text { fun } \mathrm{h} \rightarrow\left(\operatorname{den}\left(e_{1}\right) \mathrm{h}\right)+\left(\operatorname{den}\left(e_{2}\right) \mathrm{h}\right)
$$

$$
\operatorname{den}\left(e_{1} * e_{2}\right)=\text { fun h } \rightarrow\left(\operatorname{den}\left(e_{1}\right) \mathrm{h}\right) *\left(\operatorname{den}\left(e_{2}\right) \mathrm{h}\right)
$$

In plus (and times) case, two "ambiguities":

- " + " from source language or target language?
- Translate abstract + to OCaml +, ignoring overflow (!)
- when do we denote e_{1} and e_{2} ?
- Not a focus of the metalanguage. At "compile time".

Switching metalanguage

$$
\begin{aligned}
& \text { let rec denote_exp e = match e with } \\
& \text { Int i -> (fun h -> i) } \\
& \text { | Var v -> (fun h }->\mathrm{h} v \text {) } \\
& \text { | Plus(e1,e2) -> } \\
& \text { let d1 = denote_exp e1 in } \\
& \text { let d2 = denote_exp e2 in } \\
& \text { (fun h }->(\mathrm{d} 1 \mathrm{~h})+(\mathrm{d} 2 \mathrm{~h}) \text {) } \\
& \text { | Times(e1,e2) -> } \\
& \text { let d1 = denote_exp e1 in } \\
& \text { let d2 = denote_exp e2 in } \\
& \text { (fun h -> (d1 h) * (d2 h)) }
\end{aligned}
$$

Ambiguities go away, but meta and target language the same. If denote in function body, then source is "around at run time".

Statements, w/o while

$$
(\operatorname{string} \rightarrow i n t) \rightarrow(\operatorname{string} \longrightarrow i n t)
$$

$\operatorname{den}($ skip $\quad=\quad$ fun $h \rightarrow h$
$\operatorname{den}(x:=e) \quad=$
fun $h \rightarrow$ (fun $v->$ if $x=v$ then $\operatorname{den}(e) h$ else $h v$)
$\operatorname{den}\left(s_{1} ; s_{2}\right)=\operatorname{fun} \mathrm{h} \rightarrow \operatorname{den}\left(s_{2}\right)\left(\operatorname{den}\left(s_{1}\right) \mathrm{h}\right)$
$\operatorname{den}\left(\right.$ if $\left.e s_{1} s_{2}\right)=$
fun h ->
if $\operatorname{den}(e) \mathrm{h}>0$ then $\operatorname{den}\left(s_{1}\right) \mathrm{h}$ else $\operatorname{den}\left(s_{2}\right) \mathrm{h}$
Same ambiguities; same answers.

Switching metalanguage again

```
let rec denote_stmt s = match s with
    Skip -> (fun h -> h)
    | Assign(v,e) ->
        let d = denote_exp e in
        (fun h ->
            let c = d h in
            fun x -> if x=v then c else h x)
(* ....... omitting Seq ...... *)
    | If(e,s1,s2) ->
        let d1 = denote_exp e in
        let d2 = denote_stmt s1 in
        let d3 = denote_stmt s2 in
        (fun h -> if (d1 h)>0 then (d2 h) else (d3 h))
```


While

$\operatorname{den}($ while $e s)=$ let $\mathrm{rec} \mathrm{f} \mathrm{h}=$ if ($\operatorname{den}(e) h)>0 \quad$ let $d 2=$ denote_stmt s in then $f(\operatorname{den}(s) h)$ let rec $f \mathrm{~h}=$ else h in
f
| While(e,s) ->
let d1=denote_exp e in
if (d 1 h) >0
then f (d 2 h)
else h in
f

The function denoting a while statement is inherently recursive!

Good thing our target language has recursive functions!

Finishing the story

let denote_prog s =
let d = denote_stmt s in
fun () -> (d (fun x -> 0)) "ans"
Compile-time: let $x=$ denote_prog (parse file).
Run-time: print_int (x ()).
In-between: We have an OCaml program, so many tools available, but target language should be a good match.

The real story

For "real" denotational semantics, target language is math (And we write $\llbracket s \rrbracket$ instead of $\operatorname{den}(s)$)

Example: $\llbracket x:=e \rrbracket \llbracket H \rrbracket=\llbracket H \rrbracket[x \mapsto \llbracket e \rrbracket]$
There are two major problems, both due to while:

1. Math functions do not diverge, so no function denotes while 1 skip.
2. The denotation of loops cannot be circular.

The elevator version

For (1), we "lift" the semantic domains to include a special \perp. (So den $(s):\{\perp$, string \rightarrow int $\} \rightarrow\{\perp$, string \rightarrow int $\}$. For (2), we define a (meta)function f to generate a sequence of denotations: " \perp ", " ≤ 1 iteration then \perp ", " ≤ 2 iterations then \perp ", and we denote the loop via the least fixed point of f. (Intuitively, a countably infinite number of iterations.)

Proving this fixed point is well-defined takes a lecture of math (keywords: monotonic functions, complete partial orders, Knaster-Tarski theorem)

I promise not to say those words again in class.
You promise not to take this description too seriously.

Where we are

- Have seen operational and denotational semantics
- Connection to interpreters and compilers
- Useful for rigorous definitions and proving properties
- Next: Equivalence of semantics
- Crucial for compiler writers
- Crucial for code maintainers
- Then: Leave IMP behind and consider functions But first: Will any of this help write an O / S ?

Packet Filters

Almost everything I know about packet filters:

- Some bits come in off the wire
- Some application(s) want the "packet" and some do not (e.g., port number)
- For safety, only the O / S can access the wire.
- For extensibility, only an application can accept/reject a packet.

Conventional solution goes to user-space for every packet and app that wants (any) packets.

Faster solution: Run app-written filters in kernel-space.

What we need

Now the O / S writer is defining the packet-filter language!
Properties we wish of (untrusted) filters:

1. Don't corrupt kernel data structures
2. Terminate (within a time bound)
3. Run fast (the whole point)

Should we download some C/assembly code? (Get 1 of 3.)
Should we make up a language and "hope" it has these properties?

Language-based approaches

1. Interpret a language.

+ clean operational semantics, + portable, - may be slow (+ filter-specific optimizations), - unusual interface

2. Translate a language into C /assembly.

+ clean denotational semantics, + employ existing optimizers, - upfront cost, - unusual interface

3. Require a conservative subset of $C /$ assembly. + normal interface, - too conservative w/o help

IMP has taught us about (1) and (2) - we'll get to (3)

