
'

&

$

%

CSE 505: Concepts of Programming
Languages

Dan Grossman

Fall 2003

Lecture 4— “Denotational” Semantics for IMP

(Bonus: Connection to reality via packet filters)

Dan Grossman CSE505 Fall 2003, Lecture 4 1

'

&

$

%

Today’s Plan

• Finish example proofs

• Motivate doing this “obvious” stuff via “wrong” rules

• “Denotational” semantics via translation to ML

• Real-world example: packet filters

Goal: Saying “Let’s consider the trade-offs of using a

denotational semantics to achieve a high-performance,

extensible operating system” with a straight face.

Dan Grossman CSE505 Fall 2003, Lecture 4 2

'

&

$

%

Example 1 summary

Theorem: If noneg(H), noneg(s), and H ; s →n H′ ; s′,

then noneg(H′) and noneg(s′).

Proof: By induction on n. n = 0 is immediate. For n > 0,

use lemma: If noneg(H), noneg(s), and H ; s → H′ ; s′,

then noneg(H′) and noneg(s′).

Proof: By induction on derivation of H ; s → H′ ; s′.

Consider bottom-most (last) rule used: Cases Seq1, If1, If2,

and While straightforward.

Case Seq2 uses induction (s = s1; s2 and H ; s1 → H′ ; s′
1

via a shorter derivation).

Dan Grossman CSE505 Fall 2003, Lecture 4 3

'

&

$

%

Example 1 cont’d

Case Assign uses a lemma: If noneg(H), noneg(e), and

H ; e ⇓ c, then noneg(c). Proof: Induction on derivation.

Plus and Times cases use induction and math facts.

Motivation: We preserved a nontrivial property of our program

state. It would fail if we had

• Overly flexible rules, e.g.:

H ; c ⇓ c′

• An “unsafe” language like C:

H(x) = {c0, . . . , cn−1} H ; e ⇓ c c ≥ n

H ; x[e] := e′ → H′ ; s′

Dan Grossman CSE505 Fall 2003, Lecture 4 4

'

&

$

%

Example 2

Theorem: If for all H, we know s1 and s2 terminate, then

for all H, we know H; (s1; s2) terminates.

Seq Lemma: If H ; s1 →n H ′ ; s′
1, then

H ; s1; s2 →n H ′ ; s′
1; s2. Proof: Induction on n.

Using lemma, theorem holds in n + 1 + m steps where

H ; s1 →n H ′ ; skip and H ′ ; s2 →m H ′′ ; skip.

Motivation: Termination is often desirable. Can sometimes

prove it for a sublanguage (e.g., while-free IMP programs)

or for “YVIP”.

Dan Grossman CSE505 Fall 2003, Lecture 4 5

'

&

$

%

A different approach

Operational semantics defines an interpreter, from abstract

syntax to abstract syntax. Metalanguage is inference rules

(slides) or OCaml (interp.ml).

Denotational semantics defines a compiler (translater),

from abstract syntax to a different language with known

semantics.

Target language is math, but we’ll make it OCaml for now.

Metalanguage is math or OCaml (we’ll show both).

Dan Grossman CSE505 Fall 2003, Lecture 4 6

'

&

$

%

The basic idea
A heap is a math/ML function from strings to integers:

string → int

An expression denotes a math/ML function from heaps to

integers.

den(e) : (string → int) → int

A statement denotes a math/ML function from heaps to

heaps.

den(s) : (string → int) → (string → int)

Now just define den in our metalanguage (math or ML),

inductively over the source language.

Dan Grossman CSE505 Fall 2003, Lecture 4 7

'

&

$

%

Expressions

den(e) : (string → int) → int

den(c) = fun h -> c

den(x) = fun h -> h x

den(e1 + e2) = fun h -> (den(e1) h) + (den(e2) h)

den(e1 ∗ e2) = fun h -> (den(e1) h) * (den(e2) h)

In plus (and times) case, two “ambiguities”:

• “+” from source language or target language?

– Translate abstract + to OCaml +, ignoring overflow (!)

• when do we denote e1 and e2?

– Not a focus of the metalanguage. At “compile time”.

Dan Grossman CSE505 Fall 2003, Lecture 4 8

'

&

$

%

Switching metalanguage
let rec denote_exp e = match e with

Int i -> (fun h -> i)

| Var v -> (fun h -> h v)

| Plus(e1,e2) ->

let d1 = denote_exp e1 in

let d2 = denote_exp e2 in

(fun h -> (d1 h) + (d2 h))

| Times(e1,e2) ->

let d1 = denote_exp e1 in

let d2 = denote_exp e2 in

(fun h -> (d1 h) * (d2 h))

Ambiguities go away, but meta and target language the same.

If denote in function body, then source is “around at run time”.

Dan Grossman CSE505 Fall 2003, Lecture 4 9

'

&

$

%

Statements, w/o while

(string → int) → (string → int)

den(skip) = fun h -> h

den(x := e) =

fun h -> (fun v -> if x=v then den(e) h else h v)

den(s1; s2) = fun h -> den(s2) (den(s1) h)

den(if e s1 s2) =

fun h ->

if den(e) h > 0 then den(s1) h else den(s2) h

Same ambiguities; same answers.

Dan Grossman CSE505 Fall 2003, Lecture 4 10

'

&

$

%

Switching metalanguage again

let rec denote_stmt s = match s with

Skip -> (fun h -> h)

| Assign(v,e) ->

let d = denote_exp e in

(fun h ->

let c = d h in

fun x -> if x=v then c else h x)

(* omitting Seq *)

| If(e,s1,s2) ->

let d1 = denote_exp e in

let d2 = denote_stmt s1 in

let d3 = denote_stmt s2 in

(fun h -> if (d1 h)>0 then (d2 h) else (d3 h))

Dan Grossman CSE505 Fall 2003, Lecture 4 11

'

&

$

%

While

den(while e s) = | While(e,s) ->

let rec f h = let d1=denote_exp e in

if (den(e) h)>0 let d2=denote_stmt s in

then f (den(s) h) let rec f h =

else h in if (d1 h)>0

f then f (d2 h)

else h in

f

The function denoting a while statement is inherently

recursive!

Good thing our target language has recursive functions!

Dan Grossman CSE505 Fall 2003, Lecture 4 12

'

&

$

%

Finishing the story

let denote_prog s =

let d = denote_stmt s in

fun () -> (d (fun x -> 0)) "ans"

Compile-time: let x = denote_prog (parse file).

Run-time: print_int (x ()).

In-between: We have an OCaml program, so many tools

available, but target language should be a good match.

Dan Grossman CSE505 Fall 2003, Lecture 4 13

'

&

$

%

The real story

For “real” denotational semantics, target language is math

(And we write [[s]] instead of den(s))

Example: [[x := e]][[H]] = [[H]][x 7→ [[e]]]

There are two major problems, both due to while:

1. Math functions do not diverge, so no function denotes

while 1 skip.

2. The denotation of loops cannot be circular.

Dan Grossman CSE505 Fall 2003, Lecture 4 14

'

&

$

%

The elevator version

For (1), we “lift” the semantic domains to include a special ⊥.

(So den(s) : {⊥, string → int} → {⊥, string → int}.

For (2), we define a (meta)function f to generate a sequence

of denotations: “⊥”, “≤1 iteration then ⊥”, “≤2 iterations

then ⊥”, and we denote the loop via the least fixed point of f .

(Intuitively, a countably infinite number of iterations.)

Proving this fixed point is well-defined takes a lecture of math

(keywords: monotonic functions, complete partial orders,

Knaster-Tarski theorem)

I promise not to say those words again in class.

You promise not to take this description too seriously.

Dan Grossman CSE505 Fall 2003, Lecture 4 15

'

&

$

%

Where we are

• Have seen operational and denotational semantics

• Connection to interpreters and compilers

• Useful for rigorous definitions and proving properties

• Next: Equivalence of semantics

– Crucial for compiler writers

– Crucial for code maintainers

• Then: Leave IMP behind and consider functions

But first: Will any of this help write an O/S?

Dan Grossman CSE505 Fall 2003, Lecture 4 16

'

&

$

%

Packet Filters
Almost everything I know about packet filters:

• Some bits come in off the wire

• Some application(s) want the “packet” and some do

not (e.g., port number)

• For safety, only the O/S can access the wire.

• For extensibility, only an application can accept/reject

a packet.

Conventional solution goes to user-space for every packet

and app that wants (any) packets.

Faster solution: Run app-written filters in kernel-space.

Dan Grossman CSE505 Fall 2003, Lecture 4 17

'

&

$

%

What we need

Now the O/S writer is defining the packet-filter language!

Properties we wish of (untrusted) filters:

1. Don’t corrupt kernel data structures

2. Terminate (within a time bound)

3. Run fast (the whole point)

Should we download some C/assembly code? (Get 1 of 3.)

Should we make up a language and “hope” it has these

properties?

Dan Grossman CSE505 Fall 2003, Lecture 4 18

'

&

$

%

Language-based approaches

1. Interpret a language.

+ clean operational semantics, + portable, - may be

slow (+ filter-specific optimizations), - unusual

interface

2. Translate a language into C/assembly.

+ clean denotational semantics, + employ existing

optimizers, - upfront cost, - unusual interface

3. Require a conservative subset of C/assembly.

+ normal interface, - too conservative w/o help

IMP has taught us about (1) and (2) — we’ll get to (3)

Dan Grossman CSE505 Fall 2003, Lecture 4 19

