
CSE 505, Fall 2003, Lecture 5 Proofs
Dan Grossman

Note: The proofs for Theorems 1–4 assume our language is deterministic. That is, we’re really proving
only one direction of the “if and only if” nature of equivalence. You can prove the other direction on your
own.

Theorem 1: Informally, e∗4 can be replaced with (e+(e+e))+e. Formally, for all H and e, if H ; e ∗ 4 ⇓ c,
then H ; (e + (e + e)) + e ⇓ c.

Proof: The derivation of H ; e ∗ 4 ⇓ c must end with the Times rule:

H ; e ⇓ c′ H ; 4 ⇓ 4
H ; e ∗ 4 ⇓ c

where c′ is one fourth of c. In particular, we know there exists a derivation of H ; e ⇓ c′. Therefore, we can
derive:

H ; e ⇓ c′
H ; e ⇓ c′ H ; e ⇓ c′

H ; e + e ⇓ c′ + c′

H ; e + (e + e) ⇓ c′ + c′ + c′ H ; e ⇓ c′

H ; (e + (e + e)) + e ⇓ c′ + c′ + c′ + c′

Recall the + characters in the conclusion of the Plus rule are the mathetical plus. So the result of the
derivation is c. (Note: The other direction—if H ; (e + (e + e)) + e ⇓ c then H ; e ∗ 4 ⇓ c—is basically this
argument backwards.)

Theorem 2: Informally, if 1 s1 s2 is equivalent to s1. Formally, for all H, s1, and s2:

(a) For all n, if H ; if 1 s1 s2 →n H ′ ; skip, then there exist H ′′ and n′ such that H ; s1 →n′
H ′′ ; skip

and H ′′(ans) = H ′(ans).

(b) If for all n there exist H ′ and s′ such that H ; if 1 s1 s2 →n H ′ ; s′, then for all n there exist H ′′ and
s′′ such that H ; s1 →n H ′′ ; s′′.

Lemma: For all H, s1, s2, and n ≥ 1, if H ; if 1 s1 s2 →n H ′ ; s′, then H ; s1 →n−1 H ′ ; s′.
Lemma implies theorem:

(a) For n ≥ 1, it’s stronger (true for any s′ not just skip and uses H ′ and n− 1 for H ′′ and n′). The case
n = 0 is impossible because if 1 s1 s2 is not skip.

(b) Assume the lemma and for all n there exist H ′ and s′ such that H ; if 1 s1 s2 →n H ′ ; s′. Then to
show the conclusion of part (b), just use the lemma with n + 1.

Proof of the lemma: By induction on n. For the base case, n = 1, i.e., H ; if 1 s1 s2 → H ′ ; s′. Only
rule If1 applies, so H ′ is H and s′ is s1. So we need H ; s1 →0 H ; s1, which is immediate. For the
inductive case, n > 1, i.e., H ; if 1 s1 s2 →n H ′ ; s′. That means H ; if 1 s1 s2 →n−1 H ′′ ; s′′ and
H ′′ ; s′′ → H ′ ; s′ for some H ′′ and s′′. Because n− 1 < n, induction ensures H ; s1 →n−2 H ′′ ; s′′. With
that and H ′′ ; s′′ → H ′ ; s′, we get H ; s1 →n−1 H ′ ; s′.

Theorem 3: Informally, the statement-sequence operator is associative. Formally, for all H, s1, s2, and
s3:

(a) For all n, if H ; s1; (s2; s3) →n H ′ ; skip then there exist H ′ and n′ such that H ; (s1; s2); s3 →n′
H ′′ ; skip

and H ′′(ans) = H ′(ans).

(b) If for all n there exist H ′ and s′ such that H ; s1; (s2; s3) →n H ′ ; s′, then for all n there exist H ′′

and s′′ such that H ; (s1; s2); s3 →n H ′′ ; s′′.

1



Lemma For all n, if H ; s1; (s2; s3) →n H ′ ; s′, then either (1) s′ has the form s′1; (s2; s3) and
H ; (s1; s2); s3 →n H ′ ; (s′1; s2); s3 or (2) H ; (s1; s2); s3 →n H ′ ; s′.

Lemma implies theorem: It’s stronger because if s′ is skip, then only (2) applies and we have H ′′ = H ′

and n′ = n.
Proof of the lemma: By induction on n. For the base case n = 0, so (1) holds with s′1 = s1. For

the inductive case n > 0, so H ; s1; (s2; s3) →n H ′ ; s′, which means H ; s1; (s2; s3) →n−1 H ′′ ; s′′

and H ′′ ; s′′ → H ′ ; s′ for some H ′′ and s′′. So by induction either (1) s′′ has the form s′′1 ; (s2; s3) and
H ; (s1; s2); s3 →n−1 H ′′ ; (s′′1 ; s2); s3 or (2) H ; (s1; s2); s3 →n−1 H ′′ ; s′′.

If (1), then the derivation of H ′′ ; s′′ → H ′ ; s′ ends with either Seq1 or Seq2. If Seq1, then H ′′ is H ′,
s′′1 is skip and s′ is s2; s3. Furthermore, we can derive:

H ′′ ; skip; s2 → H ′′ ; s2

H ′′ ; (skip; s2); s3 → H ′′ ; s2; s3

So (2) holds. If Seq2, then the derivation of H ′′ ; s′′ → H ′ ; s′ must have the form:

H ′′ ; s′′1 → H ′ ; s′1
H ′′ ; s′′1 ; (s2; s3) → H ′ ; s′1; (s2; s3)

So there must be a derivation of H ′′ ; s′′1 → H ′ ; s′1. So we can derive:

H ′′ ; s′′1 → H ′ ; s′1
H ′′ ; s′′1 ; s2 → H ′ ; s′1; s2

H ′′ ; (s′′1 ; s2); s3 → H ′ ; (s′1; s2); s3

So (1) holds.
If (2), then H ′′ ; s′′ → H ′ ; s′ ensures H ; (s1; s2); s3 → H ′ ; s′, so (2) holds.

Theorem 4: Informally, the semantics with the rule

H ; x := x; s → H ; s

is equivalent to the semantics without it. More formally, if H ; s →∗ H ′ ; skip with the rule, then
H ; s →∗ H ′′ ; skip without it (and vice-versa!) for some H ′′ such that H ′′(ans) = H ′(ans). (We’ll
skip termination equivalence for this one, though it’s not hard.)

Proof (sketch): It is trivial to show that if H ; s →∗ H ′′ ; skip without the rule then H ; s →∗ H ′′ ; skip
with the rule because we never “have to” use the rule.

For the other direction, the interesting lemma is: If H1 ; s→ H2 ; s′ with the new rule and H1(x) = H3(x)
for all x then H3 ; s →∗ H4 ; s′ without the new rule and H2(x) = H4(x) for all x. The proof of the lemma is
by induction on the derivation of H ; s → H ′ ; s′, proceeding by cases on the last rule used in the derivation.
Several cases use this auxiliary lemma (prove it!): If H(x) = H ′(x) for all x, then H ; e ⇓ c if and only if
H ′ ; e ⇓ c. Here are the cases:

Seq1: s has the form skip; s′′ and we have a derivation of H1 ; skip; s′′ → H1 ; s′′. We can also use Seq1 to
derive H3 ; skip; s′′ → H3 ; s′′ and we already know H1 and H3 agree on all variables.

While: Just like the Seq1 case except s and s′ have different forms.

If1: s has the form if e s1 s2 and our derivation ensures s′ is s1, H2 is H1, and H1 ; e ⇓ c for some c > 0.
Our auxiliary lemma ensures H3 ; e ⇓ c, so we can use If1 to derive H3 ; if e s1 s2 → H3 ; s1 and we
already know H1 and H3 agree on all variables.

If2: Analogous to the previous case.

2



Assign: s has the form x := e, H2 is H1, x 7→ c, s′ is skip and H1 ; e ⇓ c. Our auxiliary lemma ensures
H3 ; e ⇓ c. So we can use Assign to derive H3 ; s → H3, x 7→ c ; skip. So we just need that H1, x 7→ c
and H3, x 7→ c return the same constant for all variables. This is easy to show with the two cases of x
and y 6= x.

Seq2: s has the form s1; s2 and s′ has the form s′1; s2 and H1 ; s1 → H2 ; s′1 with the new rule. So by
induction, H3 ; s1 →∗ H4 ; s′1 without the new rule and H3,H4 agree on all variables. So using the
Seq Lemma we proved in class, H3 ; s1; s2 →∗ H4 ; s′1; s2 without the new rule.

“New Rule”: s has the form x := x; s′ and H2 = H1. Without the new rule, we can use Seq2, Assign, and Seq1 to
derive H3 ; x := x; s′ →2 H3, x 7→ H3(x) ; s′ (prove it!). So we just need that H3 and H3, x 7→ H3(x)
are the same for all variables, which is easy to show.

Theorem 5: Our large-step semantics for expressions is equivalent to this small-step semantics (omitting
multiplication and using the math plus in the result of the second rule):

H; x → H(x) H; c1 + c2 → c1+c2

H; e1 → e′1
H; e1 + e2 → e′1 + e2

H; e2 → e′2
H; e1 + e2 → e1 + e′2

Formally, H ; e ⇓ c if and only if H; e →∗ c.
Proof: We prove the two directions separately. First assume H ; e ⇓ c. We need this lemma (prove

it!): If H; e →n e′, then H; e1 + e →n e1 + e′ and H; e + e2 →n e′ + e2. Given the lemma, the proof is by
induction on the derivation of H ; e ⇓ c, proceeding by cases on the last rule used in the derivation:

• Const: In this case H; e →0 c.

• Var: In this case H; e →1 c.

• Plus: In this case, we know e has the form e1 + e2, H ; e1 ⇓ c1, H ; e2 ⇓ c2, and c is the sum of
c1 and c2. By induction H; e1 →n1 c1 and H; e2 →n2 c2 for some n1 and n2. So our lemma ensures
H; e1 + e2 →n1 c1 + e2 and H; c1 + e2 →n2 c1 + c2. Therefore, using the small-step rule for adding
constants, we can derive H; e1 + e2 →n1+n2+1 c.

Now assume H; e →n c for some n. We prove H ; e ⇓ c by induction on n. For n = 0, e is c and the
Const rule lets us derive H ; c ⇓ c. For n > 0, there exists an e′ such that H; e → e′ and H; e′ →n−1 c.
By induction H ; e′ ⇓ c. So the following lemma suffices: If H; e → e′ and H ; e′ ⇓ c, then H ; e ⇓ c. We
prove the lemma by induction on the derivation of H; e → e′, proceeding by cases on the last rule used in
the derivation:

• If e is some x, then e′ and c are H(x). Using Var, we can derive H ; x ⇓ H(x).

• If e has the form c1 + c2, then e′ and c are the sum of c1 and c2. Using Plus lets us derive the result.

• If e has the form e1 + e2 and e′ has the form e′1 + e2, then the assumed derivations end like this:

H; e1 → e′1
H; e1 + e2 → e′1 + e2

H ; e′1 ⇓ c1 H ; e2 ⇓ c2

H ; e′1 + e2 ⇓ c1+c2

Using H; e1 → e′1, H ; e′1 ⇓ c1, and the induction hypothesis, H ; e1 ⇓ c1. Using this fact, H ; e2 ⇓ c2,
and the Plus rule, we can derive H ; e1 + e2 ⇓ c1+c2.

• If e has the form e1 + e2 and e′ has the form e1 + e′2, the argument is analogous to the previous case
(prove it!).

3


