
'

&

$

%

CSE 505: Concepts of Programming
Languages

Dan Grossman

Fall 2003

Lecture 7— Simply Typed Lambda Calculus

Dan Grossman CSE505 Fall 2003, Lecture 7 1

'

&

$

%

Where we are

• You’ve starting HW2 due October 28, which is pre-λ.

• Midterm November 4 in class

• Our CBV λ calculus models higher-order functions in

languages like ML and Scheme very well.

• But once “not everything is a function” we need some

type-checking

• After a couple weeks on types for functional

languages, we’ll move to object-oriented languages

Dan Grossman CSE505 Fall 2003, Lecture 7 2

'

&

$

%

Why types?

Our untyped λ-calculus is universal, like assembly

language. But we might want to allow fewer programs

(whether or not we remain Turing complete):

1. Catch “simple” mistakes (e.g., “if” applied to

“mkpair”) early (too early? not usually)

2. (Safety) Prevent getting stuck (e.g., x e) (but for

pure λ-calculus, just need to prevent free variables)

3. Enforce encapsulation (an abstract type)

• clients can’t break invariants

• clients can’t assume an implementation

• requires safety

Dan Grossman CSE505 Fall 2003, Lecture 7 3

'

&

$

%

4. Assuming well-typedness allows faster implementations

• E.g., don’t have to encode constants and plus as

functions

• Don’t have to check for being stuck

• orthogonal to safety (e.g., C)

5. Syntactic overloading (not too interesting)

• “late binding” (via run-time types) very interesting

6. Novel uses in vogue (e.g., prevent data races)

We’ll mostly focus on (2)

Dan Grossman CSE505 Fall 2003, Lecture 7 4

'

&

$

%

What is a type system?

Er, uh, you know it when you see it. Some clues:

• A decidable (?) judgment for classifying programs

(e.g., e1 + e2 has type int if e1 and e2 have type int

else it has no type)

• Fairly syntax directed (non-example??: e terminates

within 100 steps)

• A sound (?) abstraction of computation (e.g., if

e1 + e2 has type int, then evaluation produces an int

(with caveats!))

This is a CS-centric, PL-centric view. Foundational type

theory has more rigorous answers.

Dan Grossman CSE505 Fall 2003, Lecture 7 5

'

&

$

%

Plan for a couple weeks

• Simply typed λ calculus (STλC)

• (Syntactic) Type Soundness (i.e., safety)

• Extensions (pairs, sums, lists, recursion)

• Termination (coolest proof in the course)

• Type variables (∀, ∃, µ)

• References and exceptions (interesting even w/o types)

• Relation to ML (throughout)

And some other cool stuff as time permits...

Dan Grossman CSE505 Fall 2003, Lecture 7 6

'

&

$

%

Adding constants

Let’s add integers to our CBV small-step λ-calculus:

e ::= λx. e | x | e e | c

v ::= λx. e | c

We could add + and other primitives or just paramterize

“programs” by them: λplus. e. (Like Pervasives in OCaml.)

(Could do the same with constants, but there are lots of them)

(λx. e) v → e[v/x]

e1 → e′
1

e1 e2 → e′
1 e2

e2 → e′
2

v e2 → v e′
2

What are the stuck states? Why don’t we want them?

Dan Grossman CSE505 Fall 2003, Lecture 7 7

'

&

$

%

Wrong Attempt

τ ::= int | fn

` e : τ

` λx. e : fn ` c : int

` e1 : fn ` e2: int

` e1 e2 : int

1. NO: can get stuck, (λx. y) 3

2. NO: too restrictive, (λx. x 3) (λy. y)

3. NO: types not preserved, (λx. λy. y) 3

Dan Grossman CSE505 Fall 2003, Lecture 7 8

'

&

$

%

Getting it right

1. Need to type-check function bodies, which have free

variables

2. Need to distinguish functions according to argument

and result types

For (1): Γ ::= · | Γ, x : τ (a “compile-time heap”??) and

Γ ` e : τ .

For (2): τ ::= int | τ → τ (an infinite number of types)

E.g.s: int → int, (int → int) → int, int → (int → int).

Concretely, → is right-associative (like term application)

τ1 → τ2 → τ3 is τ1 → (τ2 → τ3).

Dan Grossman CSE505 Fall 2003, Lecture 7 9

'

&

$

%

STλC Type System

Γ ` e : τ τ ::= int | τ → τ

Γ ::= · | Γ, x:τ

Γ ` c : int Γ ` x : Γ(x)

Γ, x : τ1 ` e : τ2

Γ ` λx. e : τ1 → τ2

Γ ` e1 : τ2 → τ1 Γ ` e2 : τ2

Γ ` e1 e2 : τ1

The function-introduction rule is the interesting one...

Dan Grossman CSE505 Fall 2003, Lecture 7 10

'

&

$

%

A closer look
Γ, x : τ1 ` e : τ2

Γ ` λx. e : τ1 → τ2

1. Where did τ1 come from?

• Our rule “inferred” or “guessed” it.

• To be syntax directed, change λx. e to λx : τ . e

and use that τ .

2. Can make Γ an abstract partial function if

x 6∈ Dom(Γ). Systematic renaming (α-conversion)

allows it.

3. Still “too restrictive”. E.g.: λx. (x (λy. y)) (x 3)
applied to λz. z does not get stuck.

Dan Grossman CSE505 Fall 2003, Lecture 7 11

'

&

$

%

Always restrictive

“gets stuck” undecidable: If e has no constants or free

variables, then e (3 4) (or e x) gets stuck iff e terminates.

Old conclusion: “Strong types for weak minds” – need

back door (unchecked cast)

Modern conclusion: Make “false positives” (reject safe

program) rare and “false negatives” (allow unsafe

program) impossible. Be Turing-complete and convenient

even when having to “work around” a false positive.

Justification: false negatives too expensive, have resources

to use fancy type systems to make “rare” a reality.

Dan Grossman CSE505 Fall 2003, Lecture 7 12

'

&

$

%

Evaluating STλC

1. Does STλC prevent false negatives? Yes.

2. Does STλC make false positives rare? No. (A starting

point)

Big note: “Getting stuck” depends on the semantics. If we

add c v → 0 and x v → 42 we “don’t need” a type

system. Or we could say c v and x v “are values”.

That is, the language dictator deemed c e and free

variables bad. Our type system is a conservative checker

that they won’t occur.

Dan Grossman CSE505 Fall 2003, Lecture 7 13

'

&

$

%

Type Soundness

We will take a syntactic (operational) approach to

soundness/safety (the popular way for almost 10 years). . .

Thm (Type Safety): If · ` e : τ then e diverges or

e →n v for an n and v such that · ` v : τ .

Proof: By induction on n using the next two lemmas.

Lemma (Preservation): If · ` e : τ and e → e′, then

· ` e′ : τ .

Lemma (Progress): If · ` e : τ , then e is a value or there

exists an e′ such that e → e′.

Dan Grossman CSE505 Fall 2003, Lecture 7 14

'

&

$

%

Progress

Lemma: If · ` e : τ , then e is a value or there exists an e′

such that e → e′.

Proof: We first prove this lemma:

Lemma (Canonical Forms): If · ` v : τ , then:

• if τ is int, then v is some c

• if τ has the form τ1 → τ2 then v has the form λx. e.

Proof: By inspection of the form of values and typing rules.

We now prove Progress by structural induction on e. . .

Dan Grossman CSE505 Fall 2003, Lecture 7 15

'

&

$

%

Progress continued

The structure of e has one of these forms:

• x — impossible because · ` e : τ .

• c or λx. e′ — then e is a value

• e1 e2 — By induction either e1 is some v1 or can become

some e′
1. If it becomes e′

1, then e1 e2 → e′
1 e2. Else by

induction either e2 is some v2 or can become some e′
2. If

to becomes e′
2, then v1 e2 → v1 e′

2. Else e is v1 v2.

Inverting the assumed typing derivation ensures

· ` v1 : τ ′ → τ for some τ ′. So Canonical Forms ensures

v1 has the form λx. e′. So v1 v2 → e′[v2/x].

Note: If we add +, we need the other part of Canonical Forms.

Dan Grossman CSE505 Fall 2003, Lecture 7 16

'

&

$

%

Preservation

Lemma (Preservation): If · ` e : τ and e → e′, then

· ` e′ : τ .

Proof: By induction on the derivation of · ` e : τ .

Bottom rule could conclude:

• · ` c : int or · ` λx. e : τ — then e → e′ is

impossible, so lemma holds vacuously.

• · ` x : ·(x) — actually, it can’t; ·(x) doesn’t exist.

• · ` e1 e2 : τ — Then we know · ` e1 : τ ′ → τ and

· ` e2 : τ ′ for some τ ′. There are 3 ways to derive

e1 e2 → e′. . .

Dan Grossman CSE505 Fall 2003, Lecture 7 17

'

&

$

%

Preservation, app case

We have: · ` e1 : τ ′ → τ , · ` e2 : τ ′, and e1 e2 → e′.

We need: · ` e′ : τ . The derivation of e1 e2 → e′

ensures 1 of these:

• e′ is e′
1 e2 and e1 → e′

1: So with · ` e1 : τ ′ → τ

and induction, · ` e′
1 : τ ′ → τ . So with · ` e2 : τ ′

we can derive · ` e′
1 e2 : τ .

• e′ is e1 e′
2 and e2 → e′

2: So with · ` e2 : τ ′ and

induction, · ` e′
2 : τ ′. So with · ` e1 : τ ′ → τ we

can derive · ` e1 e′
2 : τ .

• e1 is some λx. e3, e2 is some v, and e′ is e3[v/x]. . .

Dan Grossman CSE505 Fall 2003, Lecture 7 18

'

&

$

%

App case, β case

Because · ` λx. e3 : τ ′ → τ , we know ·, x:τ ′ ` e3 : τ .

So with ·, x:τ ′ ` e3 : τ and · ` e2 : τ ′, we need

· ` e3[v/x] : τ .

The Substitution Lemma proves a strengthened result

(must be stronger to prove the lemma)

Lemma (Substitution): If Γ, x:τ ′ ` e1 : τ and

Γ ` e2 : τ ′, then Γ ` e1[e2/x] : τ .

Proof: By induction on derivation of Γ, x:τ ′ ` e1 : τ .

Dan Grossman CSE505 Fall 2003, Lecture 7 19

'

&

$

%

Proving Substitution

Bottom rule of Γ, x:τ ′ ` e1 : τ could conclude (page 1 of 2):

• Γ, x:τ ′ ` c : int. Then c[e2/x] = c and Γ ` c : int.

• Γ, x:τ ′ ` y : (Γ, x:τ ′)(y). Either y = x or y 6= x.

If y = x, then (Γ, x:τ ′)(x) is τ ′ and x[e2/x] is e2.

So Γ ` e2 : τ ′ satisfies the lemma.

If y 6= x then (Γ, x:τ ′)(y) is Γ(y) and y[e2/x] is y.

So we can derive Γ ` y : Γ(y).

• Γ, x:τ ′ ` ea eb : τ . Then for some τa and τb,

Γ, x:τ ′ ` ea : τa and Γ, x:τ ′ ` eb : τb.

So by induction Γ `ea[e2/x] :τa and Γ `eb[e2/x] :τb.

So we can derive Γ ` ea[e2/x] eb[e2/x] : τ .

And (ea eb)[e2/x] is ea[e2/x] eb[e2/x].

Dan Grossman CSE505 Fall 2003, Lecture 7 20

'

&

$

%

Proving Substitution Cont’d

• Γ, x:τ ′ ` λy. ea : τ . (We can assume y 6= x and

y 6∈ Dom(Γ).) Then for some τa and τb,

Γ, x:τ ′, y:τa ` ea : τb and τ is τa → τb.

By an Exchange Lemma Γ, y:τa, x:τ ′ ` ea : τb.

By a Weakening Lemma and Γ ` e2 : τ ′, we know

Γ, y:τa ` e2 : τ ′.

So by induction (using Γ, y:τa for Γ (!!)),

Γ, y:τa ` ea[e2/x] : τb.

So we can derive Γ ` λy. ea[e2/x] : τa → τb.

And (λy. ea)[e2/x] is λy. (ea[e2/x]).

Exchange: If Γ, x:τ1, y:τ2 ` e : τ , then Γ, y:τ2, x:τ1 ` e : τ

Weakening: If Γ ` e :τ , then Γ,x:τ ′ ` e : τ (if x 6∈ Dom(Γ))

Dan Grossman CSE505 Fall 2003, Lecture 7 21

'

&

$

%

Summary

What may seem a weird lemma pile is a powerful recipe:

Soundness: We don’t get stuck because our induction

hypothesis (typing) holds (Preservation) and stuck terms

aren’t well typed (contrapositive of Progress).

Preservation holds by induction on typing (replace

subterms with same type) and Substitution (for

β-reduction). Substitution must work over open terms and

requires Weakening and Exchange.

Progress holds by induction on expressions (or typing)

because either a subexpression progresses or we can make

a primitive reduction (using Canonical Forms).

Dan Grossman CSE505 Fall 2003, Lecture 7 22

