
'

&

$

%

CSE 505: Concepts of Programming Languages

Dan Grossman

Fall 2005

Lecture 4— “Denotational” Semantics for IMP

(Bonus: Connection to reality via packet filters)

Dan Grossman CSE505 Fall 2005, Lecture 4 1



'

&

$

%

Today’s Plan

• Finish proofs and motivation from last time

• “Denotational” semantics via translation to ML

• Real-world example: packet filters

Goal: Saying “Let’s consider the trade-offs of using a denotational

semantics to achieve a high-performance, extensible operating system”

with a straight face.

Dan Grossman CSE505 Fall 2005, Lecture 4 2



'

&

$

%

Example 1 summary

Theorem: If noneg(H), noneg(s), and H ; s →n H′ ; s′, then

noneg(H′) and noneg(s′).

Proof: By induction on n. n = 0 is immediate. For n > 0, use lemma: If

noneg(H), noneg(s), and H ; s → H′ ; s′, then noneg(H′) and

noneg(s′).

Proof: By induction on derivation of H ; s → H′ ; s′. Consider

bottom-most (last) rule used: Cases Seq1, If1, If2, and While

straightforward.

Case Seq2 uses induction (s = s1; s2 and H ; s1 → H′ ; s′
1 via a shorter

derivation).

Dan Grossman CSE505 Fall 2005, Lecture 4 3



'

&

$

%

Example 1 cont’d

Case Assign uses a lemma: If noneg(H), noneg(e), and H ; e ⇓ c, then

noneg(c). Proof: Induction on derivation. Plus and Times cases use

induction and math facts.

Motivation: We preserved a nontrivial property of our program state. It

would fail if we had

• Overly flexible rules, e.g.:

H ; c ⇓ c′

• An “unsafe” language like C:

H(x) = {c0, . . . , cn−1} H ; e ⇓ c c ≥ n

H ; x[e] := e′ → H′ ; s′

Dan Grossman CSE505 Fall 2005, Lecture 4 4



'

&

$

%

Example 2

Theorem: If for all H, we know s1 and s2 terminate, then for all H,

we know H; (s1; s2) terminates.

Seq Lemma: If H ; s1 →n H ′ ; s′
1, then

H ; s1; s2 →n H ′ ; s′
1; s2. Proof: Induction on n.

Using lemma, theorem holds in n + 1 + m steps where

H ; s1 →n H ′ ; skip and H ′ ; s2 →m H ′′ ; skip.

Motivation: Termination is often desirable. Can sometimes prove it for

a sublanguage (e.g., while-free IMP programs) or for “YVIP”.

Dan Grossman CSE505 Fall 2005, Lecture 4 5



'

&

$

%

Even more general proofs to come

We defined the semantics.

Given our semantics, we established properties of programs and sets of

programs.

More interesting is having multiple semantics—for what program

states are they equivalent? (For what notion of equivalence?)

Or having a more abstract semantics (e.g., a type system) and asking

if it is preserved under evaluation. (If e has type τ and e becomes e′,

does e′ have type τ?)

But first a one-lecture detour to “denotational” semantics.

Dan Grossman CSE505 Fall 2005, Lecture 4 6



'

&

$

%

A different approach

Operational semantics defines an interpreter, from abstract syntax to

abstract syntax. Metalanguage is inference rules (slides) or Caml

(interp.ml).

Denotational semantics defines a compiler (translater), from abstract

syntax to a different language with known semantics.

Target language is math, but we’ll make it Caml for now.

Metalanguage is math or Caml (we’ll show both).

Dan Grossman CSE505 Fall 2005, Lecture 4 7



'

&

$

%

The basic idea

A heap is a math/ML function from strings to integers: string → int

An expression denotes a math/ML function from heaps to integers.

den(e) : (string → int) → int

A statement denotes a math/ML function from heaps to heaps.

den(s) : (string → int) → (string → int)

Now just define den in our metalanguage (math or ML), inductively

over the source language.

Dan Grossman CSE505 Fall 2005, Lecture 4 8



'

&

$

%

Expressions

den(e) : (string → int) → int

den(c) = fun h -> c

den(x) = fun h -> h x

den(e1 + e2) = fun h -> (den(e1) h) + (den(e2) h)

den(e1 ∗ e2) = fun h -> (den(e1) h) * (den(e2) h)

In plus (and times) case, two “ambiguities”:

• “+” from source language or target language?

– Translate abstract + to Caml +, ignoring overflow (!)

• when do we denote e1 and e2?

– Not a focus of the metalanguage. At “compile time”.

Dan Grossman CSE505 Fall 2005, Lecture 4 9



'

&

$

%

Switching metalanguage

With Caml as our metalanguage, ambiguities go away.

But it’s harder to distinguish mentally between “target” and “meta”.

If denote in function body, then source is “around at run time”.

(See denote.ml.)

Dan Grossman CSE505 Fall 2005, Lecture 4 10



'

&

$

%

Statements, w/o while

(string → int) → (string → int)

den(skip) = fun h -> h

den(x := e) =

fun h -> (fun v -> if x=v then den(e) h else h v)

den(s1; s2) = fun h -> den(s2) (den(s1) h)

den(if e s1 s2) =

fun h ->

if den(e) h > 0 then den(s1) h else den(s2) h

Same ambiguities; same answers.

See denote.ml.

Dan Grossman CSE505 Fall 2005, Lecture 4 11



'

&

$

%

While

den(while e s) = | While(e,s) ->

let rec f h = let d1=denote_exp e in

if (den(e) h)>0 let d2=denote_stmt s in

then f (den(s) h) let rec f h =

else h in if (d1 h)>0

f then f (d2 h)

else h in

f

The function denoting a while statement is inherently recursive!

Good thing our target language has recursive functions!

Dan Grossman CSE505 Fall 2005, Lecture 4 12



'

&

$

%

Finishing the story

let denote_prog s =

let d = denote_stmt s in

fun () -> (d (fun x -> 0)) "ans"

Compile-time: let x = denote_prog (parse file). Run-time:

print_int (x ()).

In-between: We have a Caml program, so many tools available, but

target language should be a good match.

Dan Grossman CSE505 Fall 2005, Lecture 4 13



'

&

$

%

The real story

For “real” denotational semantics, target language is math

(And we write [[s]] instead of den(s))

Example: [[x := e]][[H]] = [[H]][x 7→ [[e]]]

There are two major problems, both due to while:

1. Math functions do not diverge, so no function denotes

while 1 skip.

2. The denotation of loops cannot be circular.

Dan Grossman CSE505 Fall 2005, Lecture 4 14



'

&

$

%

The elevator version

For (1), we “lift” the semantic domains to include a special ⊥. (So

den(s) : {⊥, string → int} → {⊥, string → int}.

For (2), we define a (meta)function f to generate a sequence of

denotations: “⊥”, “≤1 iteration then ⊥”, “≤2 iterations then ⊥”, and we

denote the loop via the least fixed point of f . (Intuitively, a countably

infinite number of iterations.)

Proving this fixed point is well-defined takes a lecture of math (keywords:

monotonic functions, complete partial orders, Knaster-Tarski theorem)

I promise not to say those words again in class.

You promise not to take this description too seriously.

Dan Grossman CSE505 Fall 2005, Lecture 4 15



'

&

$

%

Where we are

• Have seen operational and denotational semantics

• Connection to interpreters and compilers

• Useful for rigorous definitions and proving properties

• Next: Equivalence of semantics

– Crucial for compiler writers

– Crucial for code maintainers

• Then: Leave IMP behind and consider functions

But first: Will any of this help write an O/S?

Dan Grossman CSE505 Fall 2005, Lecture 4 16



'

&

$

%

Packet Filters

Almost everything I know about packet filters:

• Some bits come in off the wire

• Some application(s) want the “packet” and some do not (e.g.,

port number)

• For safety, only the O/S can access the wire.

• For extensibility, only an application can accept/reject a packet.

Conventional solution goes to user-space for every packet and app that

wants (any) packets.

Faster solution: Run app-written filters in kernel-space.

Dan Grossman CSE505 Fall 2005, Lecture 4 17



'

&

$

%

What we need

Now the O/S writer is defining the packet-filter language!

Properties we wish of (untrusted) filters:

1. Don’t corrupt kernel data structures

2. Terminate (within a time bound)

3. Run fast (the whole point)

Should we download some C/assembly code? (Get 1 of 3.)

Should we make up a language and “hope” it has these properties?

Dan Grossman CSE505 Fall 2005, Lecture 4 18



'

&

$

%

Language-based approaches

1. Interpret a language.

+ clean operational semantics, + portable, - may be slow (+

filter-specific optimizations), - unusual interface

2. Translate a language into C/assembly.

+ clean denotational semantics, + employ existing optimizers, -

upfront cost, - unusual interface

3. Require a conservative subset of C/assembly.

+ normal interface, - too conservative w/o help

IMP has taught us about (1) and (2) — we’ll get to (3)

Dan Grossman CSE505 Fall 2005, Lecture 4 19


