CSE505, Lecture 5 Supplement, Fall 2005
Dan Grossman
By popular demand, here are proofs for theorems only sketched in the lecture- 5 slides. (The equivalence proof for small-step and large-step expression semantics is complete enough in the slides I think. I wrote these very quickly, so corrections are welcome.

Theorem: $H ; e * 2 \Downarrow c$ if and only if $H ; e+e \Downarrow c$.
Proof: (Does not use induction)

- First assume $H ; e * 2 \Downarrow c$ and show $H ; e+e \Downarrow c$. Any derivation of $H ; e * 2 \Downarrow c$ must end with the mULT rule, which means there must exist derivations of $H ; e \Downarrow c^{\prime}$ and $H ; 2 \Downarrow 2$, and c must be $2 c^{\prime}$. That is, there must be a derivation that looks like this:

$$
\frac{\vdots}{\frac{\vdots ; e \Downarrow c^{\prime}}{H ; e * 2 \Downarrow 2 c^{\prime}} \overline{H ; 2 \Downarrow 2}}
$$

So given that there exists a derivation of $H ; e \Downarrow c^{\prime}$, we can use ADD to derive:

$$
\frac{H ; e \Downarrow c^{\prime} \quad H ; e \Downarrow c^{\prime}}{H ; e+e \Downarrow c^{\prime}+c^{\prime}}
$$

Math provides $c^{\prime}+c^{\prime}=2 c^{\prime}$, so the conclusion of this derivation is what we need.

- Now assume $H ; e+e \Downarrow c$ and show $H ; e * 2 \Downarrow c$. Any derivation of $H ; e+e \Downarrow c$ must end with the ADD rule, which means there exists a derivation that looks like this (where $c=c_{1}+c_{2}$):

$$
\frac{\vdots}{\frac{\vdots ; e \Downarrow c_{1}}{H ; e+e \Downarrow c_{1}+c_{2}}}
$$

In fact, we earlier proved determinacy (there is at most one c such that $H ; e \Downarrow c$), so the derivation must have this form (where $c=c_{1}+c_{1}$):

$$
\frac{\vdots}{\frac{\vdots ; e \Downarrow c_{1}}{H ; e+e \Downarrow c_{1}+c_{1}}}
$$

So given that there exists a derivation of $H ; e \Downarrow c_{1}$, we can use MULT to derive:

$$
\frac{H ; e \Downarrow c_{1} \frac{\overline{H ; 2 \Downarrow 2}}{H ; e * 2 \Downarrow 2 c_{1}}}{\frac{H}{H}}
$$

Math provides $c_{1}+c_{1}=2 c_{1}$, so the conclusion of this derivation is what we need.

$$
C::=[\cdot]|C+e| e+C|C * e| e * C
$$

Formal definition of "filling the hole":

$$
\begin{aligned}
([\cdot])[e] & =e \\
\left(C+e_{1}\right)[e] & =C[e]+e_{1} \\
\left(e_{1}+C\right)[e] & =e_{1}+C[e] \\
\left(C * e_{1}\right)[e] & =C[e] * e_{1} \\
\left(e_{1} * C\right)[e] & =e_{1} * C[e]
\end{aligned}
$$

Theorem: $H ; C[e * 2] \Downarrow c$ if and only if $H ; C[e+e] \Downarrow c$.
Proof: By induction on (the height of) the structure of C :

- If the height is 1 , then C is $[\cdot]$, so $C[e * 2]=e * 2$ and $C[e+e]=e+e$. So the previous theorem is exactly what we need.
- If the height is greater than 1 , then C has one of four forms:
- If C is $C^{\prime}+e^{\prime}$ for some C^{\prime} and e^{\prime}, then $C[e * 2]$ is $C^{\prime}[e * 2]+e^{\prime}$ and $C[e+e]$ is $C^{\prime}[e+e]+e^{\prime}$. Since C^{\prime} is shorter than C, induction ensures that for any constant $c^{\prime}, H ; C^{\prime}[e * 2] \Downarrow c^{\prime}$ if and only if $H ; C^{\prime}[e+e] \Downarrow c^{\prime}$.
Assume $H ; C^{\prime}[e * 2]+e^{\prime} \Downarrow c$ and show $H ; C^{\prime}[e+e]+e^{\prime} \Downarrow c$: Any derivation of $H ; C^{\prime}[e * 2]+e^{\prime} \Downarrow c$ must end with ADD, i.e., it looks like this (where $c=c^{\prime}+c^{\prime \prime}$):

$$
\frac{\vdots}{\frac{\vdots ; C^{\prime}[e * 2] \Downarrow c^{\prime}}{H ; C^{\prime}[e * 2]+e^{\prime} \Downarrow c}} \frac{\vdots}{H ; e^{\prime} \Downarrow c^{\prime \prime}}
$$

As argued above, the existence of a derivation of $H ; C^{\prime}[e * 2] \Downarrow c^{\prime}$ ensures the existence of a derivation of $H ; C^{\prime}[e+e] \Downarrow c^{\prime}$. So using ADD and the existence of a derivation of $H ; e^{\prime} \Downarrow c^{\prime \prime}$, we can derive:

$$
\frac{H ; C^{\prime}[e+e] \Downarrow c^{\prime} \quad H ; e^{\prime} \Downarrow c^{\prime \prime}}{H ; C^{\prime}[e+2]+e^{\prime} \Downarrow c}
$$

Now assume $H ; C^{\prime}[e+e]+e^{\prime} \Downarrow c$ and show $H ; C^{\prime}[e * 2]+e^{\prime} \Downarrow c$: Any derivation of $H ; C^{\prime}[e+2]+e^{\prime} \Downarrow c$ must end with ADD, i.e., it looks like this (where $c=c^{\prime}+c^{\prime \prime}$):

$$
\frac{\vdots}{\frac{\vdots ; C^{\prime}[e+e] \Downarrow c^{\prime}}{H ; C^{\prime}[e+2]+e^{\prime} \Downarrow c}} \frac{\vdots}{H ; e^{\prime} \Downarrow c^{\prime \prime}}
$$

As argued above, the existence of a derivation of $H ; C^{\prime}[e+e] \Downarrow c^{\prime}$ ensures the existence of a derivation of $H ; C^{\prime}[e * 2] \Downarrow c^{\prime}$. So using ADD and the existence of a derivation of $H ; e^{\prime} \Downarrow c^{\prime \prime}$, we can derive:

$$
\frac{H ; C^{\prime}[e * 2] \Downarrow c^{\prime} \quad H ; e^{\prime} \Downarrow c^{\prime \prime}}{H ; C^{\prime}[e * 2]+e^{\prime} \Downarrow c}
$$

- The other 3 cases are similar. (Try them out.)

Theorem: Informally, the statement-sequence operator is associative. Formally:
(a) For all n, if $H ; s_{1} ;\left(s_{2} ; s_{3}\right) \rightarrow^{n} H^{\prime}$; skip then there exist H^{\prime} and n^{\prime} such that $H ;\left(s_{1} ; s_{2}\right) ; s_{3} \rightarrow^{n^{\prime}} \quad H^{\prime \prime}$; skip and $H^{\prime \prime}(a n s)=H^{\prime}(a n s)$.
(b) If for all n there exist H^{\prime} and s^{\prime} such that $H ; s_{1} ;\left(s_{2} ; s_{3}\right) \rightarrow^{n} H^{\prime} ; s^{\prime}$, then for all n there exist $H^{\prime \prime}$ and $s^{\prime \prime}$ such that $H ;\left(s_{1} ; s_{2}\right) ; s_{3} \rightarrow^{n} H^{\prime \prime} ; s^{\prime \prime}$.

Lemma: For all n, if $H ; s_{1} ;\left(s_{2} ; s_{3}\right) \rightarrow^{n} H^{\prime} ; s^{\prime}$, then either (1) s^{\prime} has the form $s_{1}^{\prime} ;\left(s_{2} ; s_{3}\right)$ and $H ;\left(s_{1} ; s_{2}\right) ; s_{3} \rightarrow^{n} H^{\prime} ;\left(s_{1}^{\prime} ; s_{2}\right) ; s_{3}$ or $(2) H ;\left(s_{1} ; s_{2}\right) ; s_{3} \rightarrow^{n} H^{\prime} ; s^{\prime}$.

Lemma implies theorem: It's stronger because if s^{\prime} is skip, then only (2) applies and we have $H^{\prime \prime}=H^{\prime}$ and $n^{\prime}=n$.

Proof of the lemma: By induction on n. For the base case $n=0$, so (1) holds with $s_{1}^{\prime}=s_{1}$. For the inductive case $n>0$, so $H ; s_{1} ;\left(s_{2} ; s_{3}\right) \rightarrow^{n} H^{\prime} ; s^{\prime}$, which means $H ; s_{1} ;\left(s_{2} ; s_{3}\right) \rightarrow^{n-1} H^{\prime \prime} ; s^{\prime \prime}$ and $H^{\prime \prime} ; s^{\prime \prime} \rightarrow H^{\prime} ; s^{\prime}$ for some $H^{\prime \prime}$ and $s^{\prime \prime}$. So by induction either (1) $s^{\prime \prime}$ has the form $s_{1}^{\prime \prime} ;\left(s_{2} ; s_{3}\right)$ and $H ;\left(s_{1} ; s_{2}\right) ; s_{3} \rightarrow^{n-1} H^{\prime \prime} ;\left(s_{1}^{\prime \prime} ; s_{2}\right) ; s_{3}$ or $(2) H ;\left(s_{1} ; s_{2}\right) ; s_{3} \rightarrow^{n-1} H^{\prime \prime} ; s^{\prime \prime}$.

If (1), then the derivation of $H^{\prime \prime} ; s^{\prime \prime} \rightarrow H^{\prime} ; s^{\prime}$ ends with either Seq1 or Seq2. If Seq1, then $H^{\prime \prime}$ is H^{\prime}, $s_{1}^{\prime \prime}$ is skip and s^{\prime} is $s_{2} ; s_{3}$. Furthermore, we can derive:

$$
\frac{H^{\prime \prime} ; \text { skip } ; s_{2} \rightarrow H^{\prime \prime} ; s_{2}}{H^{\prime \prime} ;\left(\text { skip } ; s_{2}\right) ; s_{3} \rightarrow H^{\prime \prime} ; s_{2} ; s_{3}}
$$

So (2) holds. If Seq2, then the derivation of $H^{\prime \prime} ; s^{\prime \prime} \rightarrow H^{\prime} ; s^{\prime}$ must have the form:

$$
\frac{H^{\prime \prime} ; s_{1}^{\prime \prime} \rightarrow H^{\prime} ; s_{1}^{\prime}}{H^{\prime \prime} ; s_{1}^{\prime \prime} ;\left(s_{2} ; s_{3}\right) \rightarrow H^{\prime} ; s_{1}^{\prime} ;\left(s_{2} ; s_{3}\right)}
$$

So there must be a derivation of $H^{\prime \prime} ; s_{1}^{\prime \prime} \rightarrow H^{\prime} ; s_{1}^{\prime}$. So we can derive:

$$
\frac{\frac{H^{\prime \prime} ; s_{1}^{\prime \prime} \rightarrow H^{\prime} ; s_{1}^{\prime}}{H^{\prime \prime} ; s_{1}^{\prime \prime} ; s_{2} \rightarrow H^{\prime} ; s_{1}^{\prime} ; s_{2}}}{H^{\prime \prime} ;\left(s_{1}^{\prime \prime} ; s_{2}\right) ; s_{3} \rightarrow H^{\prime} ;\left(s_{1}^{\prime} ; s_{2}\right) ; s_{3}}
$$

So (1) holds.
If (2), then $H^{\prime \prime} ; s^{\prime \prime} \rightarrow H^{\prime} ; s^{\prime}$ ensures $H ;\left(s_{1} ; s_{2}\right) ; s_{3} \rightarrow H^{\prime} ; s^{\prime}$, so (2) holds.

