CSE505, Lecture 5 Supplement, Fall 2005 Dan Grossman

By popular demand, here are proofs for theorems only sketched in the lecture-5 slides. (The equivalence proof for small-step and large-step expression semantics is complete enough in the slides I think. I wrote these very quickly, so corrections are welcome.

Theorem: H; $e * 2 \Downarrow c$ if and only if H; $e + e \Downarrow c$. Proof: (Does not use induction)

• First assume H; $e * 2 \Downarrow c$ and show H; $e + e \Downarrow c$. Any derivation of H; $e * 2 \Downarrow c$ must end with the MULT rule, which means there must exist derivations of H; $e \Downarrow c'$ and H; $2 \Downarrow 2$, and c must be 2c'. That is, there must be a derivation that looks like this:

$$\frac{\frac{\vdots}{H ; e \Downarrow c'} \qquad \overline{H ; 2 \Downarrow 2}}{H ; e * 2 \Downarrow 2c'}$$

So given that there exists a derivation of H; $e \Downarrow c'$, we can use ADD to derive:

$$\frac{H ; e \Downarrow c' \qquad H ; e \Downarrow c'}{H ; e + e \Downarrow c' + c'}$$

Math provides c'+c'=2c', so the conclusion of this derivation is what we need.

• Now assume H; $e + e \Downarrow c$ and show H; $e * 2 \Downarrow c$. Any derivation of H; $e + e \Downarrow c$ must end with the ADD rule, which means there exists a derivation that looks like this (where $c = c_1 + c_2$):

$$\frac{\vdots}{H; e \Downarrow c_1} \qquad \frac{\vdots}{H; e \Downarrow c_2} \\ \frac{\vdots}{H; e + e \Downarrow c_1 + c_2}$$

In fact, we earlier proved determinacy (there is at most one c such that H; $e \Downarrow c$), so the derivation must have this form (where $c = c_1 + c_1$):

$$\frac{\vdots}{H; e \Downarrow c_1} \qquad \frac{\vdots}{H; e \Downarrow c_1}$$
$$\frac{H; e \Downarrow c_1}{H; e + e \Downarrow c_1 + c_1}$$

So given that there exists a derivation of H; $e \Downarrow c_1$, we can use MULT to derive:

$$\frac{H ; e \Downarrow c_1}{H ; e \ast 2 \Downarrow 2c_1} \frac{\overline{H ; 2 \Downarrow 2}}{H ; e \ast 2 \Downarrow 2c_1}$$

Math provides $c_1+c_1 = 2c_1$, so the conclusion of this derivation is what we need.

$$C ::= [\cdot] \mid C + e \mid e + C \mid C * e \mid e * C$$

Formal definition of "filling the hole":

$$\begin{array}{rcl} ([\cdot])[e] &=& e \\ (C+e_1)[e] &=& C[e]+e_1 \\ (e_1+C)[e] &=& e_1+C[e] \\ (C*e_1)[e] &=& C[e]*e_1 \\ (e_1*C)[e] &=& e_1*C[e] \end{array}$$

Theorem: H; $C[e * 2] \Downarrow c$ if and only if H; $C[e + e] \Downarrow c$. Proof: By induction on (the height of) the structure of C:

- If the height is 1, then C is $[\cdot]$, so C[e * 2] = e * 2 and C[e + e] = e + e. So the previous theorem is exactly what we need.
- If the height is greater than 1, then C has one of four forms:
 - If C is C' + e' for some C' and e', then C[e * 2] is C'[e * 2] + e' and C[e + e] is C'[e + e] + e'. Since C' is shorter than C, induction ensures that for any constant c', H; $C'[e * 2] \Downarrow c'$ if and only if H; $C'[e + e] \Downarrow c'$.

Assume $H : C'[e * 2] + e' \Downarrow c$ and show $H : C'[e + e] + e' \Downarrow c$: Any derivation of $H : C'[e * 2] + e' \Downarrow c$ must end with ADD, i.e., it looks like this (where c = c' + c''):

$$\frac{\vdots}{H; C'[e*2] \Downarrow c'} \qquad \frac{\vdots}{H; e' \Downarrow c''}$$
$$\frac{H; e' \Downarrow c''}{H; C'[e*2] + e' \Downarrow c}$$

As argued above, the existence of a derivation of H; $C'[e*2] \Downarrow c'$ ensures the existence of a derivation of H; $C'[e+e] \Downarrow c'$. So using ADD and the existence of a derivation of H; $e' \Downarrow c''$, we can derive:

$$\frac{H \; ; \; C'[e+e] \Downarrow c' \qquad H \; ; \; e' \Downarrow c''}{H \; ; \; C'[e+2] + e' \Downarrow c}$$

Now assume $H : C'[e+e] + e' \Downarrow c$ and show $H : C'[e*2] + e' \Downarrow c$: Any derivation of $H : C'[e+2] + e' \Downarrow c$ must end with ADD, i.e., it looks like this (where c = c' + c''):

$$\frac{\vdots}{H; C'[e+e] \Downarrow c'} \qquad \frac{\vdots}{H; e' \Downarrow c''}$$
$$\frac{H; e' \Downarrow c''}{H; C'[e+2] + e' \Downarrow c}$$

As argued above, the existence of a derivation of H; $C'[e+e] \Downarrow c'$ ensures the existence of a derivation of H; $C'[e*2] \Downarrow c'$. So using ADD and the existence of a derivation of H; $e' \Downarrow c''$, we can derive:

$$\frac{H ; C'[e*2] \Downarrow c' \qquad H ; e' \Downarrow c''}{H ; C'[e*2] + e' \Downarrow c}$$

- The other 3 cases are similar. (Try them out.)

Theorem: Informally, the statement-sequence operator is associative. Formally:

- (a) For all n, if H; s_1 ; $(s_2; s_3) \rightarrow^n H'$; skip then there exist H' and n' such that H; $(s_1; s_2); s_3 \rightarrow^{n'} H''$; skip and H''(ans) = H'(ans).
- (b) If for all *n* there exist H' and s' such that H; s_1 ; $(s_2; s_3) \rightarrow^n H'$; s', then for all *n* there exist H'' and s'' such that H; $(s_1; s_2); s_3 \rightarrow^n H''; s''$.

Lemma: For all *n*, if H; $s_1; (s_2; s_3) \to^n H'$; s', then either (1) s' has the form $s'_1; (s_2; s_3)$ and H; $(s_1; s_2); s_3 \to^n H'; (s'_1; s_2); s_3$ or (2) H; $(s_1; s_2); s_3 \to^n H'; s'$.

Lemma implies theorem: It's stronger because if s' is skip, then only (2) applies and we have H'' = H'and n' = n.

Proof of the lemma: By induction on n. For the base case n = 0, so (1) holds with $s'_1 = s_1$. For the inductive case n > 0, so H; s_1 ; $(s_2; s_3) \rightarrow^n H'$; s', which means H; s_1 ; $(s_2; s_3) \rightarrow^{n-1} H''$; s'' and H''; $s'' \rightarrow H'$; s' for some H'' and s''. So by induction either (1) s'' has the form s''_1 ; $(s_2; s_3)$ and H; $(s_1; s_2); s_3 \rightarrow^{n-1} H''$; $(s''_1; s_2); s_3$ or (2) H; $(s_1; s_2); s_3 \rightarrow^{n-1} H''; s''$.

If (1), then the derivation of H''; $s'' \to H'$; s' ends with either Seq1 or Seq2. If Seq1, then H'' is H', s''_1 is skip and s' is s_2 ; s_3 . Furthermore, we can derive:

$$\frac{H'' \text{ ; skip}; s_2 \rightarrow H'' \text{ ; } s_2}{H'' \text{ ; (skip}; s_2); s_3 \rightarrow H'' \text{ ; } s_2; s_3}$$

So (2) holds. If Seq2, then the derivation of H''; $s' \to H'$; s' must have the form:

$$\frac{H''; s''_1 \to H'; s'_1}{H''; s''_1; (s_2; s_3) \to H'; s'_1; (s_2; s_3)}$$

So there must be a derivation of H''; $s''_1 \to H'$; s'_1 . So we can derive:

$$\frac{H''\;;\;s_1''\to H'\;;\;s_1'}{H''\;;\;s_1'';s_2\to H'\;;\;s_1';s_2}$$

$$\frac{H''\;;\;s_1'';s_2\to H'\;;\;s_1';s_2}{H''\;;\;(s_1'';s_2);s_3\to H'\;;\;(s_1';s_2);s_3}$$

So (1) holds.

If (2), then H''; $s'' \to H'$; s' ensures H; $(s_1; s_2); s_3 \to H'$; s', so (2) holds.