
'

&

$

%

CSE 505: Concepts of Programming Languages

Dan Grossman

Fall 2005

Lecture 7— Substitution; Simply Typed Lambda Calculus

Dan Grossman CSE505 Fall 2005, Lecture 7 1

'

&

$

%

Where we are

• Introduced λ-calculus to model scope and functions.

• CBV λ-calculus models higher-order functions in languages like

ML and Scheme very well (and functions/function-pointers in C).

• Still need to define substitution.

• Then 2–3 weeks on type systems.

• Plus a digression about continuations, also modeled well by

λ-calculus.

• Then onto object-oriented languages.

Dan Grossman CSE505 Fall 2005, Lecture 7 2

'

&

$

%

Review

λ-calculus syntax:
e ::= λx. e | x | e e

v ::= λx. e

Call-By-Value Left-Right Small-Step Operational Semantics:

(λx. e) v → e[v/x]

e1 → e′
1

e1 e2 → e′
1 e2

e2 → e′
2

v e2 → v e′
2

Call-By-Name Small-Step Operational Semantics:

(λx. e) e′ → e[e′/x]

e1 → e′
1

e1 e2 → e′
1 e2

Call-By-Need in theory “optimizes” Call-By-Name.

For most of course, assume CBV Left-Right.

Dan Grossman CSE505 Fall 2005, Lecture 7 3

'

&

$

%

Formalism not done yet

Need to define substitution—shockingly subtle.

Informally: e[e′/x] “ replaces occurrences of x in e with e’ ”

Attempt 1:

x[e/x] = e

y 6= x

y[e/x] = y

e1[e/x] = e′
1

(λy. e1)[e/x] = λy. e′
1

e1[e/x] = e′
1 e2[e/x] = e′

2

(e1 e2)[e/x] = e′
1 e′

2

Dan Grossman CSE505 Fall 2005, Lecture 7 4

'

&

$

%

Getting substitution right

Attempt 2:

e1[e/x] = e′
1 y 6= x

(λy. e1)[e/x] = λy. e′
1 (λx. e1)[e/x] = λx. e1

What if e is y or λz. y or, in general y is free in e? This mistake is

called capture.

It doesn’t happen under CBV/CBN if our source program has no free

variables.

Can happen under full reduction.

Dan Grossman CSE505 Fall 2005, Lecture 7 5

'

&

$

%

Another Try

Attempt 3:

First define the “free variables of an expression” FV (e):

FV (x) = {x}
FV (e1 e2) = FV (e1) ∪ FV (e2)

FV (λx. e) = FV (e) − {x}

Now define substitution with these rules for functions:

e1[e/x]=e′
1 y 6=x y 6∈FV (e)

(λy. e1)[e/x] = λy. e′
1 (λx. e1)[e/x] = λx. e1

But a partial definition (as stands, could get stuck because there is no

substitution).

Dan Grossman CSE505 Fall 2005, Lecture 7 6

'

&

$

%

Implicit Renaming

A partial definition because of the syntactic accident that y was used

as a binder (should not be visible – local names shouldn’t matter).

So we allow implicit systematic renaming (of a binding and all its

bound occurrences). So the left rule can always apply (can drop the

right rule).

In general, we never distinguish terms that differ only in the names of

variables. (A key language-design principle!)

So now even “different syntax trees” can be the “same term”.

Dan Grossman CSE505 Fall 2005, Lecture 7 7

'

&

$

%

Summary and some jargon

• If everything is a function, every step involves an application:

(λx. e)e′ → e[e′/x] (called β-reduction)

• Substitution avoids capture via implicit renaming (called

α-conversion)

• With full reduction, (λx. e x) → e makes sense if x 6∈ FV (e)
(called η-reduction), for CBV it can change termination behavior

– But advanced Camlers scoff at fun x -> f x, since that’s

equivalent to f.

Most languages use CBV application, some use call-by-need.

Our Turing-complete language models functions and encodes

everything else.

Dan Grossman CSE505 Fall 2005, Lecture 7 8

'

&

$

%

Why types?

Our untyped λ-calculus is universal, like assembly language. But we

might want to allow fewer programs (whether or not we remain Turing

complete):

1. Catch “simple” mistakes (e.g., “if” applied to “mkpair”) early

(too early? not usually)

2. (Safety) Prevent getting stuck (e.g., x e) (but for pure

λ-calculus, just need to prevent free variables)

3. Enforce encapsulation (an abstract type)

• clients can’t break invariants

• clients can’t assume an implementation

• requires safety

4. Assuming well-typedness allows faster implementations

• E.g., don’t have to encode constants and plus as functions

Dan Grossman CSE505 Fall 2005, Lecture 7 9

'

&

$

%

• Don’t have to check for being stuck

• orthogonal to safety (e.g., C)

5. Syntactic overloading (not too interesting)

• “late binding” (via run-time types) very interesting

6. Novel uses in vogue (e.g., prevent data races)

We’ll mostly focus on (2) with informal investigation of (3)

Dan Grossman CSE505 Fall 2005, Lecture 7 10

'

&

$

%

What is a type system?

Er, uh, you know it when you see it. Some clues:

• A decidable (?) judgment for classifying programs (e.g., e1 + e2

has type int if e1 and e2 have type int else it has no type)

• Fairly syntax directed (non-example??: e terminates within 100

steps)

• A sound (?) abstraction of computation (e.g., if e1 + e2 has type

int, then evaluation produces an int (with caveats!))

This is a CS-centric, PL-centric view. Foundational type theory has

more rigorous answers.

Dan Grossman CSE505 Fall 2005, Lecture 7 11

'

&

$

%

Plan for a couple weeks

• Simply typed λ calculus (STλC)

• (Syntactic) Type Soundness (i.e., safety)

• Extensions (pairs, sums, lists, recursion)

• Type variables (∀, ∃, µ)

• Inference (not needing to write types)

• Later: References and exceptions (interesting even w/o types)

• Relation to ML (throughout)

And some other cool stuff as time permits...

Dan Grossman CSE505 Fall 2005, Lecture 7 12

'

&

$

%

Adding constants

Let’s add integers to our CBV small-step λ-calculus:

e ::= λx. e | x | e e | c

v ::= λx. e | c

We could add + and other primitives or just paramterize “programs”

by them: λplus. e. (Like Pervasives in Caml.)

(Could do the same with constants, but there are lots of them)

(λx. e) v → e[v/x]

e1 → e′
1

e1 e2 → e′
1 e2

e2 → e′
2

v e2 → v e′
2

What are the stuck states? Why don’t we want them?

Dan Grossman CSE505 Fall 2005, Lecture 7 13

'

&

$

%

Wrong Attempt

τ ::= int | fn

` e : τ

` λx. e : fn ` c : int

` e1 : fn ` e2: int

` e1 e2 : int

1. NO: can get stuck, (λx. y) 3

2. NO: too restrictive, (λx. x 3) (λy. y)

3. NO: types not preserved, (λx. λy. y) 3

Dan Grossman CSE505 Fall 2005, Lecture 7 14

'

&

$

%

Getting it right

1. Need to type-check function bodies, which have free variables

2. Need to distinguish functions according to argument and result

types

For (1): Γ ::= · | Γ, x : τ (a “compile-time heap”??) and Γ ` e : τ .

For (2): τ ::= int | τ → τ (an infinite number of types)

E.g.s: int → int, (int → int) → int, int → (int → int).

Concretely, → is right-associative τ1 → τ2 → τ3 is

τ1 → (τ2 → τ3).

Dan Grossman CSE505 Fall 2005, Lecture 7 15

'

&

$

%

STλC Type System

Γ ` e : τ τ ::= int | τ → τ

Γ ::= · | Γ, x:τ

Γ ` c : int Γ ` x : Γ(x)

Γ, x : τ1 ` e : τ2

Γ ` λx. e : τ1 → τ2

Γ ` e1 : τ2 → τ1 Γ ` e2 : τ2

Γ ` e1 e2 : τ1

The function-introduction rule is the interesting one...

Dan Grossman CSE505 Fall 2005, Lecture 7 16

'

&

$

%

A closer look

Γ, x : τ1 ` e : τ2

Γ ` λx. e : τ1 → τ2

1. Where did τ1 come from?

• Our rule “inferred” or “guessed” it.

• To be syntax directed, change λx. e to λx : τ . e and use

that τ .

2. Can make Γ an abstract partial function if x 6∈ Dom(Γ).
Systematic renaming (α-conversion) allows it.

3. Still “too restrictive”. E.g.: λx. (x (λy. y)) (x 3) applied to

λz. z does not get stuck.

Dan Grossman CSE505 Fall 2005, Lecture 7 17

'

&

$

%

Always restrictive

“gets stuck” undecidable: If e has no constants or free variables, then

e (3 4) (or e x) gets stuck iff e terminates.

Old conclusion: “Strong types for weak minds” – need back door

(unchecked cast)

Modern conclusion: Make “false positives” (reject safe program) rare

and “false negatives” (allow unsafe program) impossible. Be

Turing-complete and convenient even when having to “work around” a

false positive.

Justification: false negatives too expensive, have resources to use

fancy type systems to make “rare” a reality.

Dan Grossman CSE505 Fall 2005, Lecture 7 18

'

&

$

%

Evaluating STλC

1. Does STλC prevent false negatives? Yes.

2. Does STλC make false positives rare? No. (A starting point)

Big note: “Getting stuck” depends on the semantics. If we add

c v → 0 and x v → 42 we “don’t need” a type system. Or we could

say c v and x v “are values”.

That is, the language dictator deemed c e and free variables bad (not

“answers” and not “reducible”). Our type system is a conservative

checker that they won’t occur.

Dan Grossman CSE505 Fall 2005, Lecture 7 19

'

&

$

%

Type Soundness

We will take a syntactic (operational) approach to soundness/safety

(the popular way for almost 10 years). . .

Thm (Type Safety): If · ` e : τ then e diverges or e →n v for an n

and v such that · ` v : τ .

Proof: By induction on n using the next two lemmas.

Lemma (Preservation): If · ` e : τ and e → e′, then · ` e′ : τ .

Lemma (Progress): If · ` e : τ , then e is a value or there exists an e′

such that e → e′.

Prove Progress today; Preservation next time...

Dan Grossman CSE505 Fall 2005, Lecture 7 20

'

&

$

%

Progress

Lemma: If · ` e : τ , then e is a value or there exists an e′ such that

e → e′.

Proof: We first prove this lemma:

Lemma (Canonical Forms): If · ` v : τ , then:

• if τ is int, then v is some c

• if τ has the form τ1 → τ2 then v has the form λx. e.

Proof: By inspection of the form of values and typing rules.

We now prove Progress by structural induction (syntax height) on e. . .

Dan Grossman CSE505 Fall 2005, Lecture 7 21

'

&

$

%

Progress continued

The structure of e has one of these forms:

• x — impossible because · ` e : τ .

• c — then e is a value

• λx. e′ — then e is a value

• e1 e2 — By induction either e1 is some v1 or can become some

e′
1. If it becomes e′

1, then e1 e2 → e′
1 e2. Else by induction

either e2 is some v2 or can become some e′
2. If to becomes e′

2,

then v1 e2 → v1 e′
2. Else e is v1 v2. Inverting the assumed

typing derivation ensures · ` v1 : τ ′ → τ for some τ ′. So

Canonical Forms ensures v1 has the form λx. e′. So

v1 v2 → e′[v2/x].

Note: If we add +, we need the other part of Canonical Forms.

Dan Grossman CSE505 Fall 2005, Lecture 7 22

