Definition and Soundness of the Simply Typed, Call-By-Name λ-Calculus

Craig Chambers

(Based on notes by Todd Millstein)
February 21, 2005

This document formally defines the simply typed, call-by-name λ-calculus and proves it sound.

1 Syntax

The metavariable I ranges over an infinite set of variable names. The metavariable E ranges over expressions (terms). The metavariable τ ranges over types. The metavariable V ranges over values.

$$
\begin{array}{lll}
E & ::= & I|\lambda I: \tau . E| E_{1} E_{2} \\
\tau & ::= & * \mid \tau_{1} \rightarrow \tau_{2} \\
V & ::= & \lambda I: \tau . E
\end{array}
$$

2 Static Semantics

The metavariable Γ represents a type environment, which is a set of ($I: \tau$) pairs. A type environment has at most one pair for a given variable name; this can always be ensured via renaming of bound variables. We extend a type environment with additional pairs using the \uplus operator, which yields the union of its argument sets of pairs if those sets have disjoint variable names, and is undefined otherwise. We use \emptyset to denote the empty type environment.

A judgment of the form $\Gamma \vdash E: \tau$ means "expression E has type τ under the typing assumptions in Γ."

$$
\begin{gathered}
\frac{I: \tau \in \Gamma}{\Gamma \vdash I: \tau}(\mathrm{T}-\text { Var }) \\
\frac{\Gamma \uplus\{I: \tau\} \vdash E: \tau^{\prime}}{\Gamma \vdash(\lambda I: \tau . E): \tau \rightarrow \tau^{\prime}}(\mathrm{T}-\lambda) \\
\frac{\Gamma \vdash E_{1}: \tau \rightarrow \tau^{\prime} \quad \Gamma \vdash E_{2}: \tau}{\Gamma \vdash E_{1} E_{2}: \tau^{\prime}}(\mathrm{T}-\mathrm{App})
\end{gathered}
$$

3 Dynamic Semantics

3.1 Substitution

The substitution function, written $\left[E_{2} / I\right] E_{1}$ and meaning "replace all free occurrences of I in E_{1} with E_{2}, avoiding capture," is defined below. We assume that renaming of bound variables is applied as necessary to make the side
conditions of the third case hold.

```
\(\left[E_{2} / I\right] I \quad=\quad E_{2}\)
\(\left[E_{2} / I\right] J \quad=\quad J \quad\) if \(J \neq I\)
\(\left[E_{2} / I\right]\left(\lambda J: \tau . E_{1}\right) \quad=\quad \lambda J: \tau .\left[E_{2} / I\right] E_{1} \quad\) if \(J \neq I\) and \(J \notin F V\left(E_{2}\right)\)
\(\left[E_{2} / I\right]\left(E_{1} E_{2}\right)=\left(\left[E_{2} / I\right] E_{1}\right)\left(\left[E_{2} / I\right] E_{2}\right)\)
```


3.2 Evaluation Rules

The judgment $E \longrightarrow E^{\prime}$ means "expression E evaluates in one step to E^{\prime}."
$\overline{\left(\lambda I: \tau . E_{1}\right) E_{2} \longrightarrow\left[E_{2} / I\right] E_{1}}(\mathrm{E}-\mathrm{App} 1) \frac{E_{1} \longrightarrow E_{1}^{\prime}}{E_{1} E_{2} \longrightarrow E_{1}^{\prime} E_{2}}(\mathrm{E}-\mathrm{App} 2)$

4 Type Soundness

4.1 Progress

Lemma (Canonical Forms):
a. If $\emptyset \vdash V: \tau_{1} \rightarrow \tau_{2}$ then V has the form $\lambda I: \tau_{1} . E$.

Proof: Immediate from rule T- λ and the fact that no other typing rules apply to a value of type $\tau_{1} \rightarrow \tau_{2}$.
Theorem (Progress): If $\emptyset \vdash E: \tau$, then either E is a value or there exists E^{\prime} such that $E \longrightarrow E^{\prime}$.
Proof: By induction on the typing derivation of $\emptyset \vdash E: \tau$.
We proceed via a case analysis of the last rule in the derivation:

- Case T-Var: Then $E=I$ and $I: \tau \in \emptyset$.

This is a contradiction, and so T-Var cannot be the last rule in the derivation.

- Case T- λ : Then $E=\lambda I: \tau_{1} . E_{1}$.
E is a value.
- Case T-App: Then $E=E_{1} E_{2}$ and $\emptyset \vdash E_{1}: \tau_{2} \rightarrow \tau$ and $\emptyset \vdash E_{2}: \tau_{2}$.

By the inductive hypothesis, either E_{1} is a value or there exists E_{1}^{\prime} such that $E_{1} \longrightarrow E_{1}^{\prime}$.
We perform a case analysis on these two possibilities:

- Case there exists E_{1}^{\prime} such that $E_{1} \longrightarrow E_{1}^{\prime}$:

By E-App2, $E_{1} E_{2} \longrightarrow E_{1}^{\prime} E_{2}$.
Thus $E^{\prime}=E_{1}^{\prime} E_{2}$.

- Case E_{1} is a value V_{1} :

Since $\emptyset \vdash V_{1}: \tau_{2} \rightarrow \tau$, by the Canonical Forms lemma, V_{1} has the form $\lambda I: \tau_{2} . E_{3}$.
By E-App1, $\left(\lambda I: \tau_{2} . E_{3}\right) E_{2} \longrightarrow\left[E_{2} / I\right] E_{3}$.
Thus $E^{\prime}=\left[E_{2} / I\right] E_{3}$.

4.2 Preservation

Lemma (Permutation): If $\Gamma \uplus\left\{I_{1}: \tau_{1}\right\} \uplus\left\{I_{2}: \tau_{2}\right\} \vdash E: \tau$, then $\Gamma \uplus\left\{I_{2}: \tau_{2}\right\} \uplus\left\{I_{1}: \tau_{1}\right\} \vdash E: \tau$.
Proof: By the fact that \uplus is a commutative operator.
Lemma (Weakening): If $\Gamma \vdash E: \tau$ and $I^{\prime} \notin \operatorname{dom}(\Gamma)$, then $\Gamma \uplus\left\{I^{\prime}: \tau^{\prime}\right\} \vdash E: \tau$.
Proof: By induction on the typing derivation of $\Gamma \vdash E: \tau$.
We proceed via a case analysis of the last rule in the derivation:

- Case T-Var: Then $E=I$ and $I: \tau \in \Gamma$.

Since $I^{\prime} \notin \operatorname{dom}(\Gamma)$, we know $I \neq I^{\prime}$ and so $\Gamma \uplus\left\{I^{\prime}: \tau^{\prime}\right\}$ is defined.
Therefore $I: \tau \in \Gamma \uplus\left\{I^{\prime}: \tau^{\prime}\right\}$.
By T-Var, $\Gamma \uplus\left\{I^{\prime}: \tau^{\prime}\right\} \vdash I: \tau$.

- Case T- λ : Then $E=\lambda I_{1}: \tau_{1} . E_{2}$ and $\tau=\tau_{1} \rightarrow \tau_{2}$ and $\Gamma \uplus\left\{I_{1}: \tau_{1}\right\} \vdash E_{2}: \tau_{2}$.

We assume w.l.o.g. that $I_{1} \neq I^{\prime}$, renaming I_{1} if necessary.
Since $I^{\prime} \notin \operatorname{dom}(\Gamma)$ and $I_{1} \neq I^{\prime}$, then $I^{\prime} \notin \operatorname{dom}\left(\Gamma \uplus\left\{I_{1}: \tau_{1}\right\}\right)$.
By the inductive hypothesis, $\Gamma \uplus\left\{I_{1}: \tau_{1}\right\} \uplus\left\{I^{\prime}: \tau^{\prime}\right\} \vdash E_{2}: \tau_{2}$.
By Permutation, $\Gamma \uplus\left\{I^{\prime}: \tau^{\prime}\right\} \uplus\left\{I_{1}: \tau_{1}\right\} \vdash E_{2}: \tau_{2}$.
Ву Т- $\lambda, \Gamma \uplus\left\{I^{\prime}: \tau^{\prime}\right\} \vdash\left(\lambda I_{1}: \tau_{1} . E_{2}\right): \tau_{1} \rightarrow \tau_{2}$.

- Case T-App: Then $E=E_{1} E_{2}$ and $\Gamma \vdash E_{1}: \tau_{2} \rightarrow \tau$ and $\Gamma \vdash E_{2}: \tau_{2}$.

By the inductive hypothesis, $\Gamma \uplus\left\{I^{\prime}: \tau^{\prime}\right\} \vdash E_{1}: \tau_{2} \rightarrow \tau$ and $\Gamma \uplus\left\{I^{\prime}: \tau^{\prime}\right\} \vdash E_{2}: \tau_{2}$.
By T-App, $\Gamma \uplus\left\{I^{\prime}: \tau^{\prime}\right\} \vdash E_{1} E_{2}: \tau$.
Corollary: If $\Gamma \vdash E: \tau$ and $\Gamma \uplus \Gamma^{\prime}$ is defined, then $\Gamma \uplus \Gamma^{\prime} \vdash E: \tau$.
Proof: By repeated applications of Weakening.
Lemma (Substitution Preserves Typing): If $\Gamma \uplus\left\{I_{2}: \tau_{2}\right\} \vdash E_{1}: \tau_{1}$ and $\emptyset \vdash E_{2}: \tau_{2}$, then $\Gamma \vdash\left[E_{2} / I_{2}\right] E_{1}: \tau_{1}$.
Proof: By induction on the typing derivation of $\Gamma \uplus\left\{I_{2}: \tau_{2}\right\} \vdash E_{1}: \tau_{1}$.
We proceed via a case analysis of the last rule in the derivation:

- Case T-Var: Then $E_{1}=I_{1}$ and $I_{1}: \tau_{1} \in \Gamma \uplus\left\{I_{2}: \tau_{2}\right\}$.

There are two subcases to consider, depending on whether or not $I_{1}=I_{2}$:

- Case $I_{1}=I_{2}$: Then $\left[E_{2} / I_{2}\right] I_{1}=\left[E_{2} / I_{1}\right] I_{1}=E_{2}$, and so we need to show $\Gamma \vdash E_{2}: \tau_{1}$. By definition of $\uplus, I_{2} \notin \operatorname{dom}(\Gamma)$.
Since $I_{2}: \tau_{1} \in \Gamma \uplus\left\{I_{2}: \tau_{2}\right\}$ and $I_{2} \notin \operatorname{dom}(\Gamma), I_{2}: \tau_{1} \in\left\{I_{2}: \tau_{2}\right\}$ and so $\tau_{1}=\tau_{2}$.
Since $\emptyset \vdash E_{2}: \tau_{1}$, by Weakening $\Gamma \vdash E_{2}: \tau_{1}$.
- Case $I_{1} \neq I_{2}$: Then $\left[E_{2} / I_{2}\right] I_{1}=I_{1}$, and so we need to show $\Gamma \vdash I_{1}: \tau_{1}$.

Since $I_{1}: \tau_{1} \in \Gamma \uplus\left\{I_{2}: \tau_{2}\right\}$ and $I_{1} \neq I_{2}$, we know $I_{1}: \tau_{1} \in \Gamma$.
By T-Var, $\Gamma \vdash I_{1}: \tau_{1}$.

- Case T- λ : Then $E_{1}=\lambda I_{0}: \tau_{0}$. E_{1}^{\prime} and $\tau_{1}=\tau_{0} \rightarrow \tau_{1}^{\prime}$ and $\Gamma \uplus\left\{I_{2}: \tau_{2}\right\} \uplus\left\{I_{0}: \tau_{0}\right\} \vdash E_{1}^{\prime}: \tau_{1}^{\prime}$. Then $\left[E_{2} / I_{2}\right]\left(\lambda I_{0}: \tau_{0} . E_{1}^{\prime}\right)=\lambda I_{0}: \tau_{0} .\left[E_{2} / I_{2}\right] E_{1}^{\prime}$, where $I_{0} \neq I_{2}$ and $I_{0} \notin F V\left(E_{2}\right)$, which we can assume w.l.o.g. by renaming I_{0} appropriately. So we need to show $\Gamma \vdash\left(\lambda I_{0}: \tau_{0} .\left[E_{2} / I_{2}\right] E_{1}^{\prime}\right): \tau_{0} \rightarrow \tau_{1}^{\prime}$.

By Permutation, $\Gamma \uplus\left\{I_{0}: \tau_{0}\right\} \uplus\left\{I_{2}: \tau_{2}\right\} \vdash E_{1}^{\prime}: \tau_{1}^{\prime}$.
By the inductive hypothesis, $\Gamma \uplus\left\{I_{0}: \tau_{0}\right\} \vdash\left[E_{2} / I_{2}\right] E_{1}^{\prime}: \tau_{1}^{\prime}$.
By T- $\lambda, \Gamma \vdash\left(\lambda I_{0}: \tau_{0} .\left[E_{2} / I_{2}\right] E_{1}^{\prime}\right): \tau_{0} \rightarrow \tau_{1}^{\prime}$.

- Case T-App: Then $E_{1}=E_{1}^{\prime} E_{1}^{\prime \prime}$ and $\Gamma \uplus\left\{I_{2}: \tau_{2}\right\} \vdash E_{1}^{\prime}: \tau_{1}^{\prime \prime} \rightarrow \tau_{1}$ and $\Gamma \uplus\left\{I_{2}: \tau_{2}\right\} \vdash E_{1}^{\prime \prime}: \tau_{1}^{\prime \prime}$.

Then $\left[E_{2} / I_{2}\right]\left(E_{1}^{\prime} E_{1}^{\prime \prime}\right)=\left(\left[E_{2} / I_{2}\right] E_{1}^{\prime}\right)\left(\left[E_{2} / I_{2}\right] E_{1}^{\prime \prime}\right)$, so we need to show $\Gamma \vdash\left(\left(\left[E_{2} / I_{2}\right] E_{1}^{\prime}\right)\left(\left[E_{2} / I_{2}\right] E_{1}^{\prime \prime}\right)\right): \tau_{1}$. By the inductive hypothesis, $\Gamma \vdash\left[E_{2} / I_{2}\right] E_{1}^{\prime}: \tau_{1}^{\prime \prime} \rightarrow \tau_{1}$ and $\Gamma \vdash\left[E_{2} / I_{2}\right] E_{1}^{\prime \prime}: \tau_{1}^{\prime \prime}$.
By T-App, $\Gamma \vdash\left(\left(\left[E_{2} / I_{2}\right] E_{1}^{\prime}\right)\left(\left[E_{2} / I_{2}\right] E_{1}^{\prime \prime}\right)\right): \tau_{1}$.

Theorem (Preservation): If $\emptyset \vdash E: \tau$ and $E \longrightarrow E^{\prime}$, then $\emptyset \vdash E^{\prime}: \tau$.
Proof: By induction on the typing derivation of $\emptyset \vdash E: \tau$.
We proceed via a case analysis of the last rule in the derivation:

- Case T-Var: Then $E=I$.

But by inspection of the operational semantics, there is no E^{\prime} such that $I \longrightarrow E^{\prime}$, so this is a contradiction, and so T-Var cannot be the last rule in the derivation.

- Case T- λ : Then $E=\lambda I: \tau_{1} . E_{1}$.

But by inspection of the operational semantics, there is no E^{\prime} such that $\lambda I: \tau_{1} . E_{1} \longrightarrow E^{\prime}$, so this is a contradiction, and so $\mathrm{T}-\lambda$ cannot be the last rule in the derivation.

- Case T-App: Then $E=E_{1} E_{2}$ and $\emptyset \vdash E_{1}: \tau_{2} \rightarrow \tau$ and $\emptyset \vdash E_{2}: \tau_{2}$.

We're given that $E_{1} E_{2} \longrightarrow E^{\prime}$. We proceed by a case analysis on the last rule used in the derivation of this reduction step:

- Case E-App2: Then $E^{\prime}=E_{1}^{\prime} E_{2}$ and $E_{1} \longrightarrow E_{1}^{\prime}$.

By the inductive hypothesis, $\emptyset \vdash E_{1}^{\prime}: \tau_{2} \rightarrow \tau$.
By T-App, $\emptyset \vdash E_{1}^{\prime} E_{2}: \tau$.

- Case E-App1: Then $E_{1}=\lambda I: \tau^{\prime} . E_{3}$ and $E^{\prime}=\left[E_{2} / I\right] E_{3}$.

Since $\emptyset \vdash\left(\lambda I: \tau^{\prime} . E_{3}\right): \tau_{2} \rightarrow \tau$, by inspection of the typing rules, T- λ must have been the typing rule applied to prove this judgment, and so we know $\tau^{\prime}=\tau_{2}$ and the rule's premise, $\emptyset \uplus\left\{I: \tau_{2}\right\} \vdash E_{3}: \tau$.
By the Substitution lemma, $\emptyset \vdash\left[E_{2} / I\right] E_{3}: \tau$.

4.3 Soundness

Theorem (Soundness): If $\emptyset \vdash E: \tau$ then either E is a value or there exists E^{\prime} such that $E \longrightarrow E^{\prime}$ and $\emptyset \vdash E^{\prime}: \tau$. Proof: Since $\emptyset \vdash E: \tau$, by Progress either E is a value or there exists E^{\prime} such that $E \longrightarrow E^{\prime}$. In the latter case, by Preservation we have $\emptyset \vdash E^{\prime}: \tau$.

