
Definition and Soundness of the
Simply Typed, Call-By-Name λ-Calculus

Craig Chambers
(Based on notes by Todd Millstein)

February 21, 2005

This document formally defines the simply typed, call-by-name λ-calculus and proves it sound.

1 Syntax

The metavariable I ranges over an infinite set of variable names. The metavariable E ranges over expressions (terms).
The metavariable τ ranges over types. The metavariable V ranges over values.

E ::= I | λI : τ. E | E1 E2

τ ::= * | τ1 → τ2

V ::= λI : τ. E

2 Static Semantics

The metavariable Γ represents a type environment, which is a set of (I :τ) pairs. A type environment has at most
one pair for a given variable name; this can always be ensured via renaming of bound variables. We extend a type
environment with additional pairs using the] operator, which yields the union of its argument sets of pairs if those
sets have disjoint variable names, and is undefined otherwise. We use ∅ to denote the empty type environment.

A judgment of the form Γ ` E : τ means “expression E has type τ under the typing assumptions in Γ.”

I : τ ∈ Γ
Γ ` I : τ

(T-Var)

Γ] {I : τ} ` E : τ ′

Γ ` (λI : τ. E) : τ → τ ′
(T-λ)

Γ ` E1 : τ → τ ′ Γ ` E2 : τ

Γ ` E1 E2 : τ ′
(T-App)

3 Dynamic Semantics

3.1 Substitution

The substitution function, written [E2/I]E1 and meaning “replace all free occurrences of I in E1 with E2, avoiding
capture,” is defined below. We assume that renaming of bound variables is applied as necessary to make the side

1

conditions of the third case hold.

[E2/I]I = E2

[E2/I]J = J if J 6= I
[E2/I](λJ : τ. E1) = λJ : τ. [E2/I]E1 if J 6= I and J /∈ FV (E2)
[E2/I](E1 E2) = ([E2/I]E1) ([E2/I]E2)

3.2 Evaluation Rules

The judgment E −→ E ′ means “expression E evaluates in one step to E ′.”

(λI : τ. E1)E2 −→ [E2/I]E1

(E-App1)
E1 −→ E′

1

E1 E2 −→ E′

1
E2

(E-App2)

4 Type Soundness

4.1 Progress

Lemma (Canonical Forms):

a. If ∅ ` V : τ1 → τ2 then V has the form λI : τ1. E.

Proof: Immediate from rule T-λ and the fact that no other typing rules apply to a value of type τ1 → τ2.

Theorem (Progress): If ∅ ` E : τ , then either E is a value or there exists E ′ such that E −→ E′.
Proof: By induction on the typing derivation of ∅ ` E : τ .
We proceed via a case analysis of the last rule in the derivation:

• Case T-Var: Then E = I and I : τ ∈ ∅.
This is a contradiction, and so T-Var cannot be the last rule in the derivation.

• Case T-λ: Then E = λI : τ1. E1.
E is a value.

• Case T-App: Then E = E1 E2 and ∅ ` E1 : τ2 → τ and ∅ ` E2 : τ2.
By the inductive hypothesis, either E1 is a value or there exists E ′

1
such that E1 −→ E′

1
.

We perform a case analysis on these two possibilities:

– Case there exists E ′

1
such that E1 −→ E′

1
:

By E-App2, E1 E2 −→ E′

1
E2.

Thus E′ = E′

1
E2.

– Case E1 is a value V1:
Since ∅ ` V1 : τ2 → τ , by the Canonical Forms lemma, V1 has the form λI : τ2. E3.
By E-App1, (λI : τ2. E3)E2 −→ [E2/I]E3.
Thus E′ = [E2/I]E3.

2

4.2 Preservation

Lemma (Permutation): If Γ] {I1 : τ1}] {I2 : τ2} ` E : τ , then Γ] {I2 : τ2}] {I1 : τ1} ` E : τ .
Proof: By the fact that] is a commutative operator.

Lemma (Weakening): If Γ ` E : τ and I ′ /∈ dom(Γ), then Γ] {I ′ : τ ′} ` E : τ .
Proof: By induction on the typing derivation of Γ ` E : τ .
We proceed via a case analysis of the last rule in the derivation:

• Case T-Var: Then E = I and I : τ ∈ Γ.
Since I ′ /∈ dom(Γ), we know I 6= I ′ and so Γ] {I ′ : τ ′} is defined.
Therefore I : τ ∈ Γ] {I ′ : τ ′}.
By T-Var, Γ] {I ′ : τ ′} ` I : τ .

• Case T-λ: Then E = λI1 : τ1. E2 and τ = τ1 → τ2 and Γ] {I1 : τ1} ` E2 : τ2.
We assume w.l.o.g. that I1 6= I ′, renaming I1 if necessary.
Since I ′ /∈ dom(Γ) and I1 6= I ′, then I ′ /∈ dom(Γ] {I1 : τ1}).
By the inductive hypothesis, Γ] {I1 : τ1}] {I ′ : τ ′} ` E2 : τ2.
By Permutation, Γ] {I ′ : τ ′}] {I1 : τ1} ` E2 : τ2.
By T-λ, Γ] {I ′ : τ ′} ` (λI1 : τ1. E2) : τ1 → τ2.

• Case T-App: Then E = E1 E2 and Γ ` E1 : τ2 → τ and Γ ` E2 : τ2.
By the inductive hypothesis, Γ] {I ′ : τ ′} ` E1 : τ2 → τ and Γ] {I ′ : τ ′} ` E2 : τ2.
By T-App, Γ] {I ′ : τ ′} ` E1 E2 : τ .

Corollary: If Γ ` E : τ and Γ] Γ′ is defined, then Γ] Γ′ ` E : τ .
Proof: By repeated applications of Weakening.

Lemma (Substitution Preserves Typing): If Γ] {I2 : τ2} ` E1 : τ1 and ∅ ` E2 : τ2, then Γ ` [E2/I2]E1 : τ1.
Proof: By induction on the typing derivation of Γ] {I2 : τ2} ` E1 : τ1.
We proceed via a case analysis of the last rule in the derivation:

• Case T-Var: Then E1 = I1 and I1 : τ1 ∈ Γ] {I2 : τ2}.
There are two subcases to consider, depending on whether or not I1 = I2:

– Case I1 = I2: Then [E2/I2]I1 = [E2/I1]I1 = E2, and so we need to show Γ ` E2 : τ1.
By definition of], I2 /∈ dom(Γ).
Since I2 : τ1 ∈ Γ] {I2 : τ2} and I2 /∈ dom(Γ), I2 : τ1 ∈ {I2 : τ2} and so τ1 = τ2.
Since ∅ ` E2 : τ1, by Weakening Γ ` E2 : τ1.

– Case I1 6= I2: Then [E2/I2]I1 = I1, and so we need to show Γ ` I1 : τ1.
Since I1 : τ1 ∈ Γ] {I2 : τ2} and I1 6= I2, we know I1 : τ1 ∈ Γ.
By T-Var, Γ ` I1 : τ1.

• Case T-λ: Then E1 = λI0 : τ0. E′

1
and τ1 = τ0 → τ ′

1
and Γ] {I2 : τ2}] {I0 : τ0} ` E′

1
: τ ′

1
.

Then [E2/I2](λI0 : τ0. E′

1
) = λI0 : τ0. [E2/I2]E

′

1
, where I0 6= I2 and I0 /∈ FV (E2), which we can assume

w.l.o.g. by renaming I0 appropriately. So we need to show Γ ` (λI0 : τ0. [E2/I2]E
′

1
) : τ0 → τ ′

1
.

By Permutation, Γ] {I0 : τ0}] {I2 : τ2} ` E′

1
: τ ′

1
.

By the inductive hypothesis, Γ] {I0 : τ0} ` [E2/I2]E
′

1
: τ ′

1
.

By T-λ, Γ ` (λI0 : τ0. [E2/I2]E
′

1
) : τ0 → τ ′

1
.

3

• Case T-App: Then E1 = E′

1
E′′

1
and Γ] {I2 : τ2} ` E′

1
: τ ′′

1
→ τ1 and Γ] {I2 : τ2} ` E′′

1
: τ ′′

1
.

Then [E2/I2](E
′

1
E′′

1
) = ([E2/I2]E

′

1
) ([E2/I2]E

′′

1
), so we need to show Γ ` (([E2/I2]E

′

1
) ([E2/I2]E

′′

1
)) : τ1.

By the inductive hypothesis, Γ ` [E2/I2]E
′

1
: τ ′′

1
→ τ1 and Γ ` [E2/I2]E

′′

1
: τ ′′

1
.

By T-App, Γ ` (([E2/I2]E
′

1
) ([E2/I2]E

′′

1
)) : τ1.

Theorem (Preservation): If ∅ ` E : τ and E −→ E ′, then ∅ ` E′ : τ .
Proof: By induction on the typing derivation of ∅ ` E : τ .
We proceed via a case analysis of the last rule in the derivation:

• Case T-Var: Then E = I .
But by inspection of the operational semantics, there is no E ′ such that I −→ E′, so this is a contradiction, and
so T-Var cannot be the last rule in the derivation.

• Case T-λ: Then E = λI : τ1. E1.
But by inspection of the operational semantics, there is no E ′ such that λI : τ1. E1 −→ E′, so this is a
contradiction, and so T-λ cannot be the last rule in the derivation.

• Case T-App: Then E = E1 E2 and ∅ ` E1 : τ2 → τ and ∅ ` E2 : τ2.
We’re given that E1 E2 −→ E′. We proceed by a case analysis on the last rule used in the derivation of this
reduction step:

– Case E-App2: Then E ′ = E′

1
E2 and E1 −→ E′

1
.

By the inductive hypothesis, ∅ ` E ′

1
: τ2 → τ .

By T-App, ∅ ` E′

1
E2 : τ .

– Case E-App1: Then E1 = λI : τ ′. E3 and E′ = [E2/I]E3.
Since ∅ ` (λI : τ ′. E3) : τ2 → τ , by inspection of the typing rules, T-λ must have been the typing rule
applied to prove this judgment, and so we know τ ′ = τ2 and the rule’s premise, ∅] {I : τ2} ` E3 : τ .
By the Substitution lemma, ∅ ` [E2/I]E3 : τ .

4.3 Soundness

Theorem (Soundness): If ∅ ` E : τ then either E is a value or there exists E ′ such that E −→ E′ and ∅ ` E′ : τ .
Proof: Since ∅ ` E : τ , by Progress either E is a value or there exists E ′ such that E −→ E′. In the latter case, by
Preservation we have ∅ ` E ′ : τ .

4

