CSE 505: Programming Languages

“But if thought corrupts language, language can also
corrupt thought. A bad usage can spread by tradition and
imitation even among people who should and do know
better.”

George Orwell, Politics and the English Language, 1946

“If you cannot be the master of your language, you must be its
slave.”
Richard Mitchell

“A different language is a different vision of life.”
Federico Fellini

“The language we use ... determines the way in which we view
and think about the world around us.”
The Sapir-Whorf hypothesis

Craig Chambers 1 CSE 505

CSE 505: Programming Languages

Instructor: Craig Chambers
TAs: Keunwoo Lee, Michael Ringenburg

Goals:
¢ study major concepts & design principles
in programming languages
« get practical experience using languages
embodying concepts & principles
¢ gain reading-level understanding of formal semantics
* be exposed to some current research

Why?
« understand the capabilities of modern programming
language technology

« understand how to exploit this technology in service of
more reliable, safer, more flexible systems and
more productive humans

Craig Chambers 2 CSE 505

Course outline

Functional languages (e.g. ML, Scheme, Haskell)
« side-effect-free programming
« recursive first-class functions, recursive data structures
« algebraic data types, pattern-matching
« polymorphic static type systems & type inference

Formal semantics
* lambda calculus & extensions
 static & dynamic (operational) semantics
« key theorems, some proofs

Object-oriented languages (e.g. Smalltalk, Self, Cecil/Diesel)
« inheritance, subtype polymorphism
 various models of dynamic dispatching
¢ polymorphic static type systems

Craig Chambers 3 CSE 505

Coursework

Functional & OO sections:
¢ 1-2 homeworks each
¢ 1-2 programming projects each
¢ 1 exam each

Semantics section:
¢ 1-2 homeworks

¢ 1 exam

Final exam

Craig Chambers 4 CSE 505




Language design goals

Some end goals:
¢ be easy to learn
¢ support rapid initial development
* support easy maintenance, evolution
¢ encourage/guarantee reliability, safety
¢ encourage/guarantee portability
« allow/encourage efficiency

Some means to these goals:
« readability
« writability
¢ simplicity [but what does “simple” mean?]
* expressiveness [but what does this mean?]
« fully-specified, platform-independent, safe semantics

Many goals in conflict
= language design is an engineering & artistic activity
= need to consider target audience’s needs

Craig Chambers 5 CSE 505

Some target audiences

Scientific, numerical computing
« Fortran, APL, ZPL

Systems programming
¢ C, C++, Modula-3, ...

Applications/symbolic programming
« Java, C#, Lisp, Scheme, ML, Smalltalk, Cecil, Diesel, ...

Scripting, macro languages
¢ csh, Perl, Python, Tcl, Excel macros, ...

Specialized languages
¢ SQL, LATEX, PostScript, Unix regular expressions, ...

Craig Chambers 6 CSE 505

Some good language design principles

Strive for a simple, regular, orthogonal model
« for evaluation
« for data reference
» for memory management
E.g., be expression-oriented, reference-oriented

Include sophisticated abstraction mechanisms,
to define and name abstractions once, use many times

« for control structures, data structures, types, ...

Include polymorphic static type checking

E.g., with universal and existential subtype-bounded
quantification

Have a complete & precise language specification

« full run-time error checking for cases not detected statically

Domain-specific languages can exploit domain restrictions
for better checking, expressiveness, performance

Craig Chambers 7 CSE 505

Partial history of programming languages

A Fortran COBOL
Lisp
60 Algol 60
BASIC
\J
Fortran66 Simula67
70
Pascal c ' Prolog
 J Smalltalk Scheme
Fortran77
i, SML
Ada

Common Lisp
Self

'
x cLos

90 Fortran90

HPF
Cecil
ZPL *\ /
GJ
00 MultiJava
Cyclone C#
\ Java 1.5 Dlesel

Craig Chambers 8 CSE 505




ML

Salient features:
« functional
« functions are first-class values
« largely side-effect free
« strongly, statically typed
e polymorphic type system
* automatic type inference
« expression-oriented, recursion-oriented
« garbage-collected heap
« pattern matching
¢ exceptions
¢ advanced module system
« highly regular and expressive

Designed as a Meta Language for automatic theorem proving
system in mid 70’s by Milner et al.

Standard ML: 1986

SML’97: 1997

Caml: a French version of ML, mid 80’s

O’Caml: an object-oriented extension of Caml, late 90’s
EML: a locally-developed OO extension of ML, 2002

Craig Chambers 9 CSE 505

Interpreter interface

Read-eval-print loop
¢ read input expression
» reading ends with semi-colon (not needed in files)
« = prompt indicates continuing expression on next line
* evaluate expression
e print result

e repeat
- 3+ 4
val it =7 : int
- it + 5;
val it =12 : int
- it + 5

val it =17 : int

i t variable (re)bound to last evaluated value,
in case you want to use it again

An interpreter is particularly useful during initial learning and
debugging

Craig Chambers 10 CSE 505

Basic ML data types and operations

ML is organized around types
« each type defines some set of values of that type
« each type defines a set of operations on values of that type

int
e ~ +, -,* div,nod; =, <> <, > <= >=real,chr

real
e~ +,-,%,/;<, >, <=, >=(no equality);
floor,ceil,trunc,round

bool : different from i nt
¢ true,fal se;= <>;orel se, andal so

string

e eg"l said \"hi\"\tin dir C\\stuff\\dir\n"
o =, <> N

char

e e.g.#"a",#"\n"

e =,<>;ord,str

Craig Chambers 11 CSE 505

Variables and binding

Variables declared and initialized with a val binding:
- val x:int = 6;

val x = 6 : int

- val y:int = x * x;

val y 36 : int

Variable bindings cannot be changed!
« unlike assignment in C
¢ like equality in math

Variables can be bound again,
but this shadows the previous definition

e eg.it

Variable types can be omitted

< they will be inferred by ML based on the type of the r.h.s.
- val z =x *y +5;

val z = 221 : int

Craig Chambers 12 CSE 505




Strong, static typing

ML is statically typed: it will check for type errors statically
(i.e., when programs are entered, not when they’re run)

« opposite extreme: dynamically typed
¢ blends also possible

ML is strongly typed: it catches all type errors (a.k.a. type safe)

Type errors

Warning: type errors can look weird, since they use ML jargon:

- asd;

Error: unbound variable or constructor: asd

- 3 + 4.5;

Error: operator and operand don't agree
operator donmin: int * int

. o > :
[l?ut which errors are classified as type errors?] oper and: int * real
« if not strongly typed, then weakly typed in expressi on:
3+ 4.5
- 31 4
T,
Examples of other combinations? Error: overloaded variable not defined at type
static - dynamic symbol : /
ML type: int
strong
weak
Craig Chambers 13 CSE 505 Craig Chambers 14 CSE 505
Records More on records

ML records are like C structs
« allow heterogeneous field types, but fixed number of fields

Arecord type: { nanme: string, age:int}
« field order doesn’t matter

Unlike C, can write down a record value directly:
{nane="Bob Smth", age=20}

Unlike C, can construct record values that have run-time
expressions specifying the field values

{name = "Bob " A "Snmith",
age = 18+num.years_in_col | ege}

As with any other value, can bind record values to variables
- val bob = {nane="Bob " " "Smith", age=...};
val bob = {{age=20, nane="Bob Snith"}

{age: int, nanme: string}

Orthogonality in action...

Craig Chambers 15 CSE 505

Can extract record fields using #f i el dnane function
(like C’s - > operator, but a regular function)

- val bob’ = {nanme= #nane(bob),
= age= #age(bob) +1};
val bob’ = {age=21, name="Bob Smth"} : {...}

(But wait for pattern-matching, a better way to access
components of records)

Cannot assign to a record’s fields
¢ an immutable data structure

Craig Chambers 16 CSE 505




Tuples

Like records, but fields ordered by position, not label
Useful for pairs, triples, etc.

Atuple type:string * int
¢ order does matter

Atuple value: ("Joe Stevens", 45)

A tuple expr: (" Joe N "Stevens", 25+num j obs*10)
Binding a name to a tuple:

- val joe = ("Joe """ Stevens", 25+num j obs*10);
val joe = ("Joe Stevens",45) : string * int

Can extract tuple fields using #n functions
(but wait for pattern-matching for a better way)

- val joe' = (#1(joe), #2(joe)+l);
val joe’ = ("Joe Stevens",46) : string * int

Cannot assign to a tuple’s components
« another immutable data structure

Craig Chambers 17 CSE 505

Lists

ML has built-in support for singly-linked lists

« unlike records, require homogeneous element types,
but allow variable number of elements

Alisttype:int |ist
e ingeneral: T |ist, foranytype T

Alistvalue: [3, 4, 5]
¢ [] (ornil)isthe empty list

An expression constructing a list:
[1+2, 8 div 2, #age(bob)-15]

Binding a name to a list:

- val Ist =[1+2, 8 div 2, #age(bob)-15];
val Ist =[3,4,5] : int list

Craig Chambers 18 CSE 505

Basic operations on lists

Add to front of list, non-destructively: :: (an infix operator)
- val Istl = 3::(4::(5::nil));
val Istl =[3,4,5] : int list

- val Ist2 = 2::1st1;
val Ist2 =12,3,4,5] : int list

Adding to the front allocates a new link;
the original list is unchanged and still available

liﬁl% e

- Istl;
val it =[3,4,5] : int list

Craig Chambers 19 CSE 505

More on lists

Lists can be nested:
- (3 ::nil) (4 5 nil) onilg
val it =[[3],[4,5]]: int list list

Lists are homogeneous:

- [3, "hi there"];

Error: operator and operand don't agree
operator domain: int * int |ist

oper and: int * string |ist
in expression:
(3 :int) :: "hi there" :: nil

Craig Chambers 20 CSE 505




Manipulating lists

Test whether a list is empty: nul |

- null([]);

val it = true : bool

Extract the first (“head”) element of the list: hd
- hd(11) + hd(12);
val it =5 : int

Extract the rest (“tail”) of the list: t |
- val Ist3 =tl(Istl);

val Ist3 =[4,5] : int list
- val Istd4 =tlI(tl(Ist3));
val Ist4 =[] : int list

- tl(lstd); (* or hd(lst4) *)
uncaught exception Enmpty

(Pattern-matching offers alternative ways)

Cannot assign to a list's elements
¢ another immutable data structure

Craig Chambers 21 CSE 505

First-class values

All of ML'’s data values are first-class

 there are no restrictions on how they can be created, used,
passed around, bound to names, stored in other data
structures, ....

One consequence:
can nest records, tuples, lists arbitrarily
A legal value, and its type:
{foo=(3, 5.6, "seattle"),
bar=[[3,4], [56,7,8], [], [1,2]]}
{bar:int list list, foo:int*real *string}

Another consequence:
can create initialized, anonymous values as expressions,
instead of using a sequence of statements to first declare
(allocate named space) and then assign to initialize

* name-binding is orthogonal to value creation

A further consequence:
all data values are fully initialized upon creation

* no safety issues about accessing uninitialized data

Craig Chambers 22 CSE 505

Reference data model

A variable refers to a value (of whatever type), uniformly
A record, tuple, or list refers to its element values, uniformly

« all values are implicitly referred to by pointer
(even scalars like ints, bools, & chars can be viewed this
way, although they're likely implemented more efficiently)

A variable expression evaluates to
a reference to the value that the variable was bound to

A variable binding makes the l.h.s. variable
refer to its r.h.s. value

No implicit copying upon binding, parameter passing,
returning from a function, storing in a data structure
« like Java, Scheme, Smalltalk, ...; all high-level languages
< unlike C, where non-pointer values are copied
e Carrays?

No restrictions on where values may be passed, stored
= values have potentially unlimited lifetime

« implementation allocates all (non-scalar) values in the heap

Craig Chambers 23 CSE 505

Garbage collection

ML provides several ways to allocate & initialize new values:
[ IR S P Y -

But ML provides no way to deallocate/free values that are no
longer being used

Instead, ML provides automatic garbage collection:
when there are no more references to a value (either from
variables or from other objects), it is deemed garbage, and
the system will automatically deallocate the value

Evaluation of automatic garbage collection

+ dangling pointers impossible
(could not guarantee type safety without this!)

storage leaks “impossible”
simpler programming
can be more efficient!

+

+

+

less ability to carefully manage memory use & reuse

(Automatic GCs exist even for C & C++, as free libraries)

Craig Chambers 24 CSE 505




Functions

Some function definitions:
- fun square(x:int):int = x * x;

val square = fn : int ->int
- fun swap(a:int, b:string):string*int = (b, a);
val swap = fn : int*string -> string*int

A function has a type of the form T g -> Tresurt
* if want multiple arguments, use tuple type for T, 4
e * binds tighter than - >
 can use tuple type for T, ggy ¢ , t0O!

Some function calls:

- square(3);

val it =9 : int

- swap(3 * 4, "billy" ~ "bob");

val it = ("billybob",12) : string * int

Craig Chambers 25 CSE 505

Function call syntax

Since all functions take one argument,
parentheses aren’t part of the call syntax:

- square 3;

val it =9 : int

- (square 3) + (square 4);
val it =25 : int

Juxtaposition binds tighter than infix operators:
- square 3 + square 4;

val it =25 : int

- square (3 + square 4);

val it =361 : int

Parentheses common if argument is a tuple expression:

- swap (3 * 4, "billy" ~ "bob");
val it = ("billybob",12) : string * int

Craig Chambers 26 CSE 505

Expression-orientation

Function body is a single expression
fun square(x:int):int = x * x
¢ not a statement list
¢ noreturn keyword

Like equality in math
« acall to a function is equivalent to its body,
after substituting its formals for the actuals in the call

(square 3) = (X*Xx)[x-3] < 3*3

There are no statements in ML, only expressions

« what would be statements in other languages
are recast as expressions in ML

Craig Chambers 27 CSE 505

If expression

General form:
if test then el else e2

¢ return value of either el or e2,
based on whether t est istrue orfal se

¢ cannot omit el se part
- fun max(x:int, y:int):int =

= if x >y then x else y;
val max = fn : int * int ->int

Liketest ? el : e2expressioninC
¢ don't need a distincti f statement

Craig Chambers 28 CSE 505




Static typechecking of if expression

What are the rules for typechecking an i f expression?
What's the type of the result of i f ?

Some basic principles of typechecking:
¢ values are members of types

 the type of an expression must include all the values that
might possibly result from evaluating that expression at
run-time

Requirements on each i f expression:
« the type of the t est expression must be bool

 the type oftheresult of thei f mustinclude whatever values
might be returned from the i f
» thei f might return the result of either el or e2

e ML’s solution: el and e2 must have the same type,
and that type is the type of the result of the i f expression
(other languages have more general solutions)

Craig Chambers 29 CSE 505

Let expression

An expression that introduces a new nested scope
with local variable declarations

¢ unlike { ...} statements in C, which don’t compute results

General form:
let val idiitype; = eq

val id, type, en
in

ebody
end

* type; are optional; they'll be inferred from the e;

Evaluates each e; and binds ittoi d;, in turn
« each e; can refer to the previous i d;..i d; _; bindings

» eachi d; shadows any earlier/enclosing bindings of the
same name

Evaluates epqqy and returns its result as result of | et expr

* epody can referto all the i dy..i d, bindings

Thei d; bindings (not values) disappear after epqqy is evaluated

Craig Chambers 30 CSE 505

Example scopes

- val x =3

val x =3 : int

- fun f(y:int):int =
= let

= val z = x +y

= val x = 4

= in

= (et

= val y =z + X
= in

= X +y +z

= end)

= + X +y +z

= end;

val f =fn : int ->int
- val x = 5;

val x =5 int

Craig Chambers 31 CSE 505

“Statements”

For expressions that have no useful result,
return empty tuple, of type uni t :

- print "hi\n";
hi
val it = () : unit

Expression sequence operator: ; (infix operator)
¢ evaluates both “arguments”, returns second one
 like C’'s comma operator
- val z = (print "hi "; print "there\n"; 3);
hi there
val z =3 : int

Craig Chambers 32 CSE 505




Type inference for functions

Declaration of function result types can be omitted
« infer function result type from body expression result type
- fun max(x:int, y:int) =
= if x >y then x else vy;
val max = fn : int * int -> int

Can even omit declarations of formal argument types
« infer based on how arguments are used in body
¢ constraint-based algorithm to do type inference

- fun max(x, y) =
= if x >y then x else y;
val max = fn : int * int -> int

Craig Chambers 33 CSE 505

Functions with many possible types

Some functions could be used on arguments of different types

Some examples:
null:cantestanint list,orastring list,or...
¢ in general, work on a list of any type T:
null: T list -> bool

hd: similarly works on a list of any type T, and returns an element
of that type:

hd: Tlist -> T

swap: takes a pair of an Aand a B, returns a pair of a Band an A:
swap: A* B->B* A

How to define such functions in a statically-typed language?
« in C: can't (or have to use casts)
¢ in C++: can use templates (but can’'t check separately)
¢ in Java, C#: use generic Obj ect type, plus downcasts
« in ML: allow functions to have polymorphic types

Craig Chambers 34 CSE 505

Polymorphic types

A polymorphic type contains one or more type variables
« an identifier prefixed with a quote

E.g.
"a list
'a* 'b* 'a*'c
{x:'a, y:'b} list * "a->"hb

A polymorphic type describes a set of possible types,
where each type variable is replaced with some actual type

« each occurrence of a type variable must be replaced with
the same type

"a* 'bh*'a* e
['a - int, '"b - string, 'c - real->real]
=

int * string * int * (real->real)

Craig Chambers 35 CSE 505

Polymorphic functions

Functions can have polymorphic types:

nul | : '"alist -> bool

hd c'alist ->'a

tl c'alist ->'alist

(op ::): '"a* 'alist ->"a list
swap 'a* 'b->'b* 'a

To call a polymorphic function, must first instantiate the
polymorphic type into some regular function type

 caller knows types of arguments

« can compute how to replace type variables so that the
replaced function type matches the argument types

derive type of result of call
each call of a function instantiated independently

E.g.hd [3, 4, 5]
actual argument type: i nt |i st

polymorphic type of hd:*a list -> "a
e replace ' awithint (tomake'a |ist matchint |ist)
instantiated type of hd for thiscall: i nt 1ist -> int

 type of result of call: i nt

Craig Chambers 36 CSE 505




Polymorphic values

Non-functions can have polymorphic types, too:
nil: "alist

Each reference to a polymorphic value finds the right
instantiation for that use, separately from other references

E.g.
(3:: 4 ::nil) :: (5:: nil) :: nil

Craig Chambers 37 CSE 505

Polymorphism versus overloading

Polymorphic function:
same function usable for many different argument types, with
uniform behavior

- fun swap(a,b) = (b, a);
val swap =fn: 'a* 'b->"'b* 'a

Overloaded function:
different functions with same name but (possibly) unrelated
behavior

Resolve overloading to particular function,
based on static argument types in ML

- 3+ 4
val it =7 : int

- 3.0 + 4.5;
val it =7.5: real

- (op +); (* which +? default to int version *)
val it =fn: int*int ->int

- (op +):real *real ->real;
val it =fn : real*real -> real

Craig Chambers 38 CSE 505

An awkward special case: equality types

The built-in = function tests for “structural” or value equality
(not identity)

The = function is polymorphic over all types that “admit equality”
* any type except those containing reals or functions
e use''a,"'"Db, etc. to stand for these equality types

- fun is_same(x, y) =
if x =y then "yes" else "no";

val is_same = fn: '""a* '""a -> string

- is_sane(3, 4);

val it = "no" string

- is_sanme({l=[3,4,5],h=("a","b"),w=nil},
{1=[3,4,5],h=("a","b"), w=nil});

val it = "yes" : string
- is_sane(3.4, 3.4);
Error: operator and operand don’t agree
[equal ity type required]

operator domain: ''Z* '’'Z

oper and: real * real

in expression:

is_sane (3.4,3.4)

Craig Chambers 39 CSE 505

Loops, using recursion

ML has no loop statement or expression
Instead, use recursion to compute a result

E.g., appending one list onto the front of another one
(non-destructively, since lists are immutable)
fun append(11, 12) =
if null 11
then |2
else hd | 1::append(tl 11, 12)

- val Ist1l [3, 4];
- val Ist2 =[5, 6, 7];
val |st3 = append(lstl, |st2);

Istl nil
3 4

| st2 F»nil
5 6 7
I st3
3 4

Craig Chambers 40 CSE 505




Tail recursion

Tail recursion: recursive call is last operation before returning

¢ can be implemented just as efficiently as iteration,
in both time and space,
since tail-caller isn’t needed after callee returns

Some tail-recursive functions:
fun last(lst) =

let val tail =tl Ist in
if null tail then
hd | st
el se
last tail
end

fun includes(lst, x) =

if null Ist then
fal se

else if hd Ist = x then
true

el se

includes(tl Ist, x)

Is append tail-recursive?

Craig Chambers 41 CSE 505

Converting to tail-recursive form

Can often rewrite a non-tail-recursive function tail-recursively
 introduce a helper function
« the helper function has an extra accumulator argument
« the accumulator holds the partial result computed so far
« accumulator returned as full result when base case reached

This isn't tail-recursive:

fun fact(n) =
if n<=1then
1
el se
n * fact(n-1)

This is:
fun fact(n) =
let fun fact_helper(n, res) =
if n<=1then

res
el se
fact _helper(n - 1, res * n)
in
fact _hel per(n, 1)
end
Craig Chambers 42 CSE 505

Pattern matching

Pattern-matching: a convenient syntax for
extracting components of compound values
(tuple, record, or list)

A pattern looks like an expression to build a compound value,
but with variable names in some places

¢ cannot use the same variable name more than once

Can use pattern in place of variable on l.h.s. of val binding

¢ binds any variable names in pattern to the corresponding
subparts of the value on the r.h.s.

- val x = (fal se, 17);
val x = (false,17) : bool *int

- val (a,b) = x;
val a = false : bool
val b = 17 : int

- val (rootl, root2) = quad_roots(3.0,4.0,5.0);

val rootl = 0.786299647847 : real
val root2 = ~2.11963298118 : real

Craig Chambers 43 CSE 505

More patterns

- val [x,y] = 3::4::nil;
val x =3 : int
val y =4 : int

- val (x::y::zs) =1[3,4,5,6,7];

val x =3 : int
val y =4 : int
val zs =[5,6,7] : int list

Constants (ints, bools, strings, chars, nil) can be patterns:
- val (x,true,3,"x",z) =
(5.5,true, 3,"x",[3,4]);
5.5 : real
[3,4] : int list

val x
val z

If don’t care about some component, can use a wildcard: _
- val (_::_::zs) =1[3,4,5,6,7];
val zs =[5,6,7] : int list

Patterns can be nested, too
« orthogonality

Craig Chambers 44 CSE 505




Function argument patterns

Formal parameter of a f un declaration can be a pattern

- fun swap (a, b) = (b, a);

val swap = fn: 'a* b ->"'b*' a
- fun swap2 x = (#1 x, #2 x);
val swap2 = fn: "a* b ->"b* a

- fun swap3 x =
let val (a,b) = x in (b,a) end;
val swap3 = fn: "a* b ->"'b* a

- fun best_friend
{student ={ name=n, age=_},
grades=_,
best _friends={nane=f,age=_}::_} =
n”""'s best friend is " " f;
val best _friend = fn
{best _friends:{age:'a, nane:string} list,
grades:'b,
student: {age:'c, nane:string}}

Patterns allowed wherever binding occurs, orthogonally

Craig Chambers 45 CSE 505

Multiple cases

Often a function’s implementation can be broken down into
several different cases, based on the argument value

ML allows a single function to be declared via several cases
Each case identified using pattern-matching

¢ cases checked in order, until first matching case

- fun fib 0 =0

| fib1=1
| fibn=fib(n-1) + fib(n-2);
val fib =fn : int ->int
- fun null nil = true
| null (_::_) = false;
val null =fn: "alist -> bool
- fun append(nil, Ist) =Ist
| append(x::xs,lst) = x :: append(xs,|st);
val append = fn : "alist * "alist ->"a list

The function has a single type
= all cases must have same argument and result types

Craig Chambers 46 CSE 505

Missing cases

What if we don’t provide enough cases?

* ML gives a warning message “match nonexhaustive”
when function is declared (statically)

* ML raises an exception “nonexhaustive match failure”
if invoked and no existing case applies (dynamically)

- fun first_elem (x::xs) = x;
War ni ng: mat ch nonexhaustive
X 11 XS => ...

val first_elem=fn: "alist ->"'a

- first_elem[3,4,5];
val it =3 : int

- first_elem][];

uncaught exception nonexhaustive match failure

How would you provide an implementation of this missing case?

* Unlike C, ML has no catch-all NULL pointer that could be
returned

Craig Chambers 47 CSE 505

Exceptions

If get in a situation where you can’t produce a normal value of
the right type, then can raise an exception

« aborts out of normal execution
¢ can be handled by some caller
« reported as a top-level “uncaught exception” if not handled

Step 1: declare an except i on that can be raised
- exception EnptylList;
exception Enptyli st

Step 2: use the r ai se expression where desired

- fun first_elem (x::xs) = x
| first_elemnil = raise Enptylist;

val first_elem=fn: "alist ->"'a

- first_elem[3,4,5];
val it =3 : int

- first_elem][];
uncaught exception EnptylLi st

Craig Chambers 48 CSE 505




Handling exceptions

Add handler clause to expressions to handle (some) exceptions

raised in that expression

Syntax:

expr handl e exn_name;
| exn_nane,
| _ => exprp

« this is an expression;

=> exprq
=> expr,

each expr; must return same type as expr

- fun second_elem| =
val second_elem= fn :

- (second_elem[3]
handl e EnptyLi st

val it =4 : int

Craig Chambers

first_elem (tl 1);

‘alist ->"'a

=> ~1) + 5;

49 CSE 505

Exceptions with arguments

Can have exceptions with arguments

- exception | Cerror of int;
exception | CError of int;

- (... raise ICerror(-3) ...)

handl e | CError(code) => ...

Craig Chambers 50

code ...;

CSE 505




