Polymorphic type inference

ML infers types of functions (etc.) automatically, as follows:

1. Assign each bound variable & subexpression
a fresh type variable

» plus fresh type variables for function’s argument & result types

2. For each subexpression, generate constraints on types
of its operands and/or result
 constraints of the form t ypeExpr ; == typeExpr,, e.g.
'a ==int or (string * 'b) == ('c * 'd list)
» constrain each function case’s argument pattern to be equal to
function’s argument type variable

» constraint each function case’s body expression to be equal to
function’s result type variable

» before using a polymorphic identifier, replace quantified type
variables with fresh ones for that occurrence

3. Solve constraints

« if overloaded operator is unresolved after constraint solving,
defaultto i nt version

« overconstrained (unsatisfiable constraints) = type error

» underconstrained (still some unconstrained type variables) =
a polymorphic result

Craig Chambers 92 CSE 505

Example

fun sum Ist =

if null Ist then O

else hd Ist +

sum (tl Ist)

Craig Chambers 93 CSE 505

Another example

fun map f nil = nil

map f (x::xs)

map f xs

Craig Chambers 94 CSE 505

Unification

Key operation during type inference: constraint solving
« all constraints are equalities between type expression trees

« vyield further (simpler) constraints
on any embedded type variables in either tree

Unification is key subroutine that
« checks whether structures of two trees are compatible
« yields equality constraints on embedded type variables

After a type variable is constrained to be equal to some other
type expression, then (conceptually) replace that variable
with the type expression in all later constraint solving

« special case: one type variable same as another

« sophisticated implementations use union-find data
structures for fast merging of equivalent type variables

Butwhatabout'a == (int * "a list) ?
« occurs check: reject programs that try to constrain
a type variable to be equal to
a different type expression that contains that variable

Craig Chambers 95 CSE 505

Let-bound polymorphism

ML type inference supports only let-bound polymorphism

« only val - or f un-declared names can be polymorphic,
not names of formals

« implies that all implicit quantifiers of polymorphic variables
are at outer level (“prenex form”)

- fun id(x) = x;

val id =fn: 'a->"a

(* with explicit quantifier: val id =fn: 0'a.'a->a *)
- fun g(f) = (f 3, f "hi");

(* type errorin ML; f cannot be given a polymorphic type *)

(* this (legal) ML type wouldn't allow the two different f calls:

val g=fn: Oa.(('a->a) ->int*string) *)

What if ML allowed explicitly quantified polymorphic types for
formals?

- fun g(f:0'a.'a->"a) = (f 3, f "hi");
val g =fn: (Oa.'a->a) ->int*string
- g(id);

val it = (3, "hi") : int * string

Type inference precludes first-class polymorphic values

Craig Chambers 96 CSE 505

Polymorphic vs. monomorphic recursion

When analyzing the body of a polymorphic function,
what do we do when we encounter a recursive call?

fun f(Ist) =
f(hd(Ist)) ... f(tl(lIst))

If support polymorphic recursion,
then f is considered polymorphic in its body,
and each recursive call uses a fresh instantiation
(like any call to a polymorphic function)

If support only monomorphic recursion,
then treat f as having a non-polymorphic type in its body,
which forces recursive call to pass same argument types as
formals

Type inference under polymorphic recursion is undecidable
(but only in obscure cases)

< and hard to implement since don’t know what type variables
f will have when recursive reference encountered

ML uses monomorphic recursion

Craig Chambers 97 CSE 505

Nested polymorphic functions

After doing type inference for a function, if any type variables
remain in its type, then make the function polymorphic over
them

But what about a nested function?

fun f(x) =
| et
fun g(u, v) = ([x,u], [v,V])
in
g(x, 5) ... (* does thiswork? *)

g([x], true) (* does this? *)

end

Typeoff:'a ->"'

Typeofg:'a * '"b -> "a list * '"b |list
« but' aand' b are not equally flexible for callers...

‘a‘inside f is a non-generalizable type variable
« don't replace with a fresh type variable when g called

Monomorphic recursion restriction implied as a special case

Craig Chambers 98 CSE 505

Properties of ML type inference

A.k.a. Hindley-Milner type inference
« allows let-bound polymorphism only
 universal unconstrained parametric polymorphism
« SML: hacks for overloading, equality types

Type inference yields principal type for expression
 single most general type that can be inferred

Worst-case complexity of type inference: exponential time
Average case complexity: linear time

Craig Chambers 99 CSE 505

References

Allow side-effects through explicit reference values:

type 'a ref

val ref 'a ->"aref

val ! s 'aref ->'a

val (op :=) : 'aref * "a ->unit

- val v =ref 0;

val v =ref 0 : int ref
- v i=1lv + 1;

val it = () : unit

- v

val it =1 : int

(ML also has ar r ays: efficiently indexable, mutable locations)

Language design principles:
* must say which things are mutable
* mutation is compartmentalized

Craig Chambers 100 CSE 505

References to polymorphic values?

- fun id(x) = x;

val ID=fn: 'a->"a

- val fp =ref id, (* type errorinreal SML... *)
val fp =ref fn: (‘a->"a) ref

- (!fp true, !'fp 5);

(true, 5) : bool * int

- fp := not;

hmmmm...

- Ifp 5

CRASH!!

Cannot allow refs containing polymorphic values

In general,
val can bind to polymorphic values (e.g.fn...,[]),
but not polymorphic expressions (e.g.ref...)

« “type vars not generalized because of value restriction”
error otherwise

« SML'90 had “weakly polymorphic types” instead

Craig Chambers 101 CSE 505

Functors

Can parameterize structures by other structures

- signature MAP = sig

= type ("'a,'b) T

= wval enpty: (''a,'b)T

= wval store: ("'a,'b)T*"'""a*"'b->(""a,'b)T
= wval fetch: (""a,"b)T* '""a->"'b

= end;

structure Assoc_List :> MAP

- structure Hash_Table :> MAP

functor MapUser (M MAP) = struct
= ... MT ... Mstore ... Mfetch ...
end;

Instantiate functors to build regular structures:

- structure MJL = MapUser (Assoc_List);
- structure MJ2 = MapUser (Hash_Tabl e);

Can typecheck MapUser separately from its instantiations

¢ unlike C++ templates,
parameterized modules of most other languages

Craig Chambers 102 CSE 505

Functors for “bounded parametric polymorphism”

Want to write polymorphic code that'’s still able to perform
operations like =, <, pri nt, etc. on its data
« can use first-class functions for this (as we saw)
« can use functions for this (as we’ll now see)

Define a signature representing the operations needed

si gnature ORDERED = sig
type T
val eq: T * T -> bool
val It: T * T -> bool
end

Define polymorphic algorithms as elements of functors

parameterized by required signature
functor Sort (O ORDERED) = struct

fun mn(x,y) =

if Olt(x,y) then x elsey
fun sort(lst) =
Olt(x, y)

end

Craig Chambers 103 CSE 505

An instantiation of Sor t

Create specialized sorter by instantiating functor with
appropriate operations

- structure IntOrder: ORDERED = struct
type T = int;

= wval It = (op <);
= val eq = (op =);
= end;

- structure IntSort = Sort(IntCOrder);

- IntSort.sort([3,5,~2,...]);

Aside: use | nt Or der : ORDERED, not | nt Or der : >ORDERED

« Using : instead of : > allows type binding (T=i nt) to bleed
through to users of | nt Or der

« | nt Order is a view/extension of an existing type, i nt ;
it isn’t creating a new ADT w/ only 2 operations

« transparent (vs. opaque) signature ascription

Craig Chambers 104 CSE 505

Another instantiation of Sort

Can create nested, multiply parameterized functors:

functor PairOrder(
structure First: ORDERED;
structure Second: ORDERED) : ORDERED =

struct
type T = First. T * Second. T;
(* lexicographic comparison *)
fun It ((x1,x2),(yl,y2)) =
First.lt(x1,yl) andal so Second.|t(x2,y2);

fun eq((x1,x2),(yl,y2)) = ...;
end;

structure IntStringSort = Sort (
PairOrder(structure First = IntOder;
structure Second = StringOrder));

- IntStringSort. sort(

= [(3,"hi"),(3,"there”), (2,"bob")]);
val it =[(2,"bob"),(3,"hi"),(3,"there”)] : ...

Craig Chambers 105 CSE 505

Signature “subtyping”

Signature specifies a particular interface

Any structure that satisfies that interface can be used
where that interface is expected

« e.g. in functor application

Doesn'’t have to be an exact match: structure can have
* more operations
« more polymorphic operations
« more details of implementation of types

than required by signature

Craig Chambers 106 CSE 505

Some limitations of ML modules

Structures are not first-class values
* must be named or be argument to functor application

* must be declared at top-level or
nested inside another structure or functor

Functors are not first-class values
¢ must be named
* must be declared at top-level
No type inference for functor arguments

Cannot use structures as data

Cannot instantiate functors at run-time to create “objects”
= cannot simulate classes and object-oriented programming
just using structures and functors

These constraints are (in part) to enable type inference of core

Craig Chambers 107 CSE 505

Modules vs. classes

Classes (abstract data types) implicitly define a single type,
with associated constructors, observers, and mutators

Modules can define 0, 1, or many types in same module,
with associated operations over several types

« a module defining 0 types is useful
if adding operations to existing type(s)
» e.g. alibrary of integer or array functions
» cleaner than dummy class containing st at i ¢ fields & methods

« a module defining multiple types is useful
if need to share private data & operations across types
¢ cleaner than f ri end declarations in C++

“Module + type” is more orthogonal, flexible than “class=type”

« perhaps less convenient for common case

Functors similar to parameterized classes

C++'s public/private is simpler than ML's separate signatures,
but C++ doesn’t have a simple way of describing just an
interface

Scheme

Shares many features with ML:
« functional
« functions are first-class values
« largely side-effect free
 strongly typed
« expression-oriented, recursion-oriented
« garbage-collected heap
« highly regular and expressive

Unlike ML:

« dynamically typed, not statically typed

* lacks
 pattern matching (but some Scheme extensions have this)
» exceptions (but has continuations)
* modules (but some Scheme extensions have this)

« syntax blends data and program

* good macro system

Lisp designed by McCarthy in late 50's

Scheme dialect introduced by Steele and Sussman in mid 70’s
as “executable lambda calculus”

Craig Chambers 108 CSE 505 Craig Chambers 109 CSE 505
Syntax Uniform prefix “calls”
Program::={ Definition | Expr } Examples:
(+ 3 4) - 7
Definition ::= _ (+(* 38) (/ 82)- 28
(define id Expr) .
| (define (idip idiormais -« 1 Gforman) (define seven (+ 3 4))
Expr) seven o7
(+ seven 8) - 15
Expr ::=id (define (square n) (* n n))
Const ant
I Speci al Form (square seven) - 49
| (BExprn EXprargr - - - EXprargN) (define (fact n)
(if (<= n0)
. . 1
Constant ::=int | float | string | synbol
| (lambda (idformmi1 --- i dformalN) (* n (fact (- n1)))))
Expr) (fact 20) - 2432902008176640000

Speci al Form : : =
(if EXprtest EXprthen EXpreIse)
| ...

Craig Chambers 110 CSE 505

Treating all operators & function calls in prefix syntax uniformly
is simple, regular, and unambiguous, but not “traditional”

« don’t have to define precedence and associativity!
« can have 0, 1, 2, or many arguments to a “binary” operator

Craig Chambers 111 CSE 505

Special forms

Regular call expressions evaluate all argument exprs
(including function expr)
then invoke function value passing argument values

« all user-defined procedures work this way

Special forms are special “functions” where arguments aren’t
all treated as expressions to be evaluated first

« can define new special forms using macros

Example:
(define x 0)
(define y 5)
(if (=x0) 0(/yx)) - 0
(define (my-if test then el se)
(if test then else))
(nmy-if (=x0) 0 (/ y x)) - error!

Other special forms

cond: likei f -el sei f -...-el se chain:
(cond ((> x 0) 1)

((=x0) 0)

(else -1))

Short-circuiting and and or (like ML's andal so and or el se)
(or (=x0) (>(/ yx)5 ...)

| et : “simultaneous” local variable bindings:
(define x 1) (define y 2) (define z 3)
(let ((x 5)

(y (+34))

(z (+ xy z)))
(+ xy z)) -~ 5+7+(1+2+3) =18

| et *: “sequential” local variable bindings (like ML's | et):

(define-syntax ny-if (let* ((x 5)
(syntax-rules () (y (+34))
((ny-if test then el se) (z (+ xy z)))
(if test then else)))) (+ xy 2)) - B+7+(5+7+3) =27
(ny-if (=x0) 0(/yx)) - 0
Craig Chambers 112 CSE 505 Craig Chambers 113 CSE 505
Lists Dynamic typing

Translation between ML and Scheme

ML Scheme

ni |)

X i XS (cons x xs)
[x, vy, z] (list xy z)
hd(1 st) (car Ist)
tl(lst) (cdr 1Ist)
nul | (Ist) (nul'l? Ist)
Examples:

(define Ist (list 56 7 8)) - (567 8)
(define Ist2 (cons 4 Ist)) - (456 7 8)
(+ (car Ist) (car Ist2)) - 9

(define Ist3 (cdr Ist)) - (6 7 8)

« Ist,lst2,andl st 3 have shared subpieces

Craig Chambers 114 CSE 505

There are no static types, neither explicit nor inferred
Any variable, and any data structure, can hold any type of value
Values have (run-time) types, variables are typeless

Typechecking is performed only when absolutely necessary
E.g.

¢ car &cdr check that argument is a cons cell, and

« + checks that arguments are numbers, but

e cons and | i st check nothing!

Lists can be heterogenous:
(list 3 4.5 () "hi" (list 3 5))
- (3 4.5 () "hi" (35))
« lists in Scheme subsume both tuples and lists in ML

E.g. an association list of key-value pairs:
(define Zips (list (list "Seattle" 98195)
(l'ist "Boston" 02115)
(l'ist "Reston" 22091)))
- (("Seattle" 98195)
(" Boston" 02115)
("Reston" 22091))

Craig Chambers 115 CSE 505

Type testing

Programs can test the type of values at run-time

Some type-testing predicates:
nul | ?

pair?

synbol ?

bool ean?

nunber? integer?
string?

Craig Chambers 116

CSE 505

Quoting

List literals via quot e or ' special form:

(list 3 (list 4 5) 6) - (3 (4 5) 6)
(quote (3 (4 5) 6)) - (3 (4 5) 6)
"(3 (45) 6) - (3 (45) 6)

Quoted identifiers are symbol constants:
' positive - positive
(car "(if (>ab) 34)) - if

Programs and data share same regular syntax

Makes it very easy to write programs that
build, take apart, and transform programs

Craig Chambers 117 CSE 505

