Polymorphic type inference

ML infers types of functions (etc.) automatically, as follows:

1. Assign each bound variable & subexpression
a fresh type variable

» plus fresh type variables for function’s argument & result types

2. For each subexpression, generate constraints on types
of its operands and/or result
 constraints of the form t ypeExpr ; == typeExpr,, e.g.
'a ==int or (string * 'b) == ('c * 'd list)
» constrain each function case’s argument pattern to be equal to
function’s argument type variable

» constraint each function case’s body expression to be equal to
function’s result type variable

» before using a polymorphic identifier, replace quantified type
variables with fresh ones for that occurrence

3. Solve constraints

« if overloaded operator is unresolved after constraint solving,
defaultto i nt version

« overconstrained (unsatisfiable constraints) = type error

» underconstrained (still some unconstrained type variables) =
a polymorphic result
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Example

fun sum Ist =

if null Ist then O

else hd Ist +

sum (tl Ist)
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Another example

fun map f nil = nil

map f (x::xs)

map f xs
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Unification

Key operation during type inference: constraint solving
« all constraints are equalities between type expression trees

« vyield further (simpler) constraints
on any embedded type variables in either tree

Unification is key subroutine that
« checks whether structures of two trees are compatible
« yields equality constraints on embedded type variables

After a type variable is constrained to be equal to some other
type expression, then (conceptually) replace that variable
with the type expression in all later constraint solving

« special case: one type variable same as another

« sophisticated implementations use union-find data
structures for fast merging of equivalent type variables

Butwhatabout'a == (int * "a list) ?
« occurs check: reject programs that try to constrain
a type variable to be equal to
a different type expression that contains that variable
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Let-bound polymorphism

ML type inference supports only let-bound polymorphism

« only val - or f un-declared names can be polymorphic,
not names of formals

« implies that all implicit quantifiers of polymorphic variables
are at outer level (“prenex form”)

- fun id(x) = x;

val id =fn: 'a->"a

(* with explicit quantifier: val id =fn: 0'a.'a->a *)
- fun g(f) = (f 3, f "hi");

(* type errorin ML; f cannot be given a polymorphic type *)

(* this (legal) ML type wouldn't allow the two different f calls:

val g=fn: Oa.(('a->a) ->int*string) *)

What if ML allowed explicitly quantified polymorphic types for
formals?

- fun g(f:0'a.'a->"a) = (f 3, f "hi");
val g =fn: (Oa.'a->a) ->int*string
- g(id);

val it = (3, "hi") : int * string

Type inference precludes first-class polymorphic values
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Polymorphic vs. monomorphic recursion

When analyzing the body of a polymorphic function,
what do we do when we encounter a recursive call?

fun f(Ist) =
f(hd(Ist)) ... f(tl(lIst))

If support polymorphic recursion,
then f is considered polymorphic in its body,
and each recursive call uses a fresh instantiation
(like any call to a polymorphic function)

If support only monomorphic recursion,
then treat f as having a non-polymorphic type in its body,
which forces recursive call to pass same argument types as
formals

Type inference under polymorphic recursion is undecidable
(but only in obscure cases)

< and hard to implement since don’t know what type variables
f will have when recursive reference encountered

ML uses monomorphic recursion
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Nested polymorphic functions

After doing type inference for a function, if any type variables
remain in its type, then make the function polymorphic over
them

But what about a nested function?

fun f(x) =
| et
fun g(u, v) = ([x,u], [v,V])
in
g(x, 5) ... (* does thiswork? *)

g([x], true) (* does this? *)

end

Typeoff:'a ->"'

Typeofg:'a * '"b -> "a list * '"b |list
« but' aand' b are not equally flexible for callers...

‘a‘inside f is a non-generalizable type variable
« don't replace with a fresh type variable when g called

Monomorphic recursion restriction implied as a special case
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Properties of ML type inference

A.k.a. Hindley-Milner type inference
« allows let-bound polymorphism only
 universal unconstrained parametric polymorphism
« SML: hacks for overloading, equality types

Type inference yields principal type for expression
 single most general type that can be inferred

Worst-case complexity of type inference: exponential time
Average case complexity: linear time
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References

Allow side-effects through explicit reference values:

type 'a ref

val ref 'a ->"aref

val ! s 'aref ->'a

val (op :=) : 'aref * "a ->unit

- val v =ref 0;

val v =ref 0 : int ref
- v i=1lv + 1;

val it = () : unit

- v

val it =1 : int

(ML also has ar r ays: efficiently indexable, mutable locations)

Language design principles:
* must say which things are mutable
* mutation is compartmentalized
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References to polymorphic values?

- fun id(x) = x;

val ID=fn: 'a->"a

- val fp =ref id, (* type errorinreal SML... *)
val fp =ref fn: (‘a->"a) ref

- (!fp true, !'fp 5);

(true, 5) : bool * int

- fp := not;

hmmmm...

- Ifp 5

CRASH!!

Cannot allow refs containing polymorphic values

In general,
val can bind to polymorphic values (e.g.fn...,[]),
but not polymorphic expressions (e.g.ref...)

« “type vars not generalized because of value restriction”
error otherwise

« SML'90 had “weakly polymorphic types” instead

Craig Chambers 101 CSE 505

Functors

Can parameterize structures by other structures

- signature MAP = sig

= type ("'a,'b) T

= wval enpty: (''a,'b)T

= wval store: ("'a,'b)T*"'""a*"'b->(""a,'b)T
= wval fetch: (""a,"b)T* '""a->"'b

= end;

structure Assoc_List :> MAP

- structure Hash_Table :> MAP

functor MapUser (M MAP) = struct
= ... MT ... Mstore ... Mfetch ...
end;

Instantiate functors to build regular structures:

- structure MJL = MapUser (Assoc_List);
- structure MJ2 = MapUser (Hash_Tabl e);

Can typecheck MapUser separately from its instantiations

¢ unlike C++ templates,
parameterized modules of most other languages
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Functors for “bounded parametric polymorphism”

Want to write polymorphic code that'’s still able to perform
operations like =, <, pri nt, etc. on its data
« can use first-class functions for this (as we saw)
« can use functions for this (as we’ll now see)

Define a signature representing the operations needed

si gnature ORDERED = sig
type T
val eq: T * T -> bool
val It: T * T -> bool
end

Define polymorphic algorithms as elements of functors

parameterized by required signature
functor Sort (O ORDERED) = struct

fun mn(x,y) =

if Olt(x,y) then x elsey
fun sort(lst) =
Olt(x, y)

end
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An instantiation of Sor t

Create specialized sorter by instantiating functor with
appropriate operations

- structure IntOrder: ORDERED = struct
type T = int;

= wval It = (op <);
= val eq = (op =);
= end;

- structure IntSort = Sort(IntCOrder);

- IntSort.sort([3,5,~2,...]);

Aside: use | nt Or der : ORDERED, not | nt Or der : >ORDERED

« Using : instead of : > allows type binding (T=i nt) to bleed
through to users of | nt Or der

« | nt Order is a view/extension of an existing type, i nt ;
it isn’t creating a new ADT w/ only 2 operations

« transparent (vs. opaque) signature ascription
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Another instantiation of Sort

Can create nested, multiply parameterized functors:

functor PairOrder(
structure First: ORDERED;
structure Second: ORDERED) : ORDERED =

struct
type T = First. T * Second. T;
(* lexicographic comparison *)
fun It ((x1,x2),(yl,y2)) =
First.lt(x1,yl) andal so Second.|t(x2,y2);

fun eq((x1,x2),(yl,y2)) = ...;
end;

structure IntStringSort = Sort (
PairOrder(structure First = IntOder;
structure Second = StringOrder));

- IntStringSort. sort(

= [(3,"hi"),(3,"there”), (2,"bob")]);
val it =[(2,"bob"),(3,"hi"),(3,"there”)] : ...
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Signature “subtyping”

Signature specifies a particular interface

Any structure that satisfies that interface can be used
where that interface is expected

« e.g. in functor application

Doesn'’t have to be an exact match: structure can have
* more operations
« more polymorphic operations
« more details of implementation of types

than required by signature
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Some limitations of ML modules

Structures are not first-class values
* must be named or be argument to functor application

* must be declared at top-level or
nested inside another structure or functor

Functors are not first-class values
¢ must be named
* must be declared at top-level
No type inference for functor arguments

Cannot use structures as data

Cannot instantiate functors at run-time to create “objects”
= cannot simulate classes and object-oriented programming
just using structures and functors

These constraints are (in part) to enable type inference of core
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Modules vs. classes

Classes (abstract data types) implicitly define a single type,
with associated constructors, observers, and mutators

Modules can define 0, 1, or many types in same module,
with associated operations over several types

« a module defining 0 types is useful
if adding operations to existing type(s)
» e.g. alibrary of integer or array functions
» cleaner than dummy class containing st at i ¢ fields & methods

« a module defining multiple types is useful
if need to share private data & operations across types
¢ cleaner than f ri end declarations in C++

“Module + type” is more orthogonal, flexible than “class=type”

« perhaps less convenient for common case

Functors similar to parameterized classes

C++'s public/private is simpler than ML's separate signatures,
but C++ doesn’t have a simple way of describing just an
interface

Scheme

Shares many features with ML:
« functional
« functions are first-class values
« largely side-effect free
 strongly typed
« expression-oriented, recursion-oriented
« garbage-collected heap
« highly regular and expressive

Unlike ML:

« dynamically typed, not statically typed

* lacks
 pattern matching (but some Scheme extensions have this)
» exceptions (but has continuations)
* modules (but some Scheme extensions have this)

« syntax blends data and program

* good macro system

Lisp designed by McCarthy in late 50's

Scheme dialect introduced by Steele and Sussman in mid 70’s
as “executable lambda calculus”
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Syntax Uniform prefix “calls”
Program::={ Definition | Expr } Examples:
(+ 3 4) - 7
Definition ::= _ (+(* 38) (/ 82)- 28
(define id Expr) .
| (define (idip idiormais -« 1 Gforman) (define seven (+ 3 4))
Expr) seven o7
(+ seven 8) - 15
Expr ::=id (define (square n) (* n n))
Const ant
I Speci al Form (square seven) - 49
| (BExprn EXprargr - - - EXprargN) (define (fact n)
(if (<= n0)
. . 1
Constant ::=int | float | string | synbol
| (lambda (idformmi1 --- i dformalN) (* n (fact (- n1)))))
Expr) (fact 20) - 2432902008176640000

Speci al Form : : =
(if EXprtest EXprthen EXpreIse)
| ...
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Treating all operators & function calls in prefix syntax uniformly
is simple, regular, and unambiguous, but not “traditional”

« don’t have to define precedence and associativity!
« can have 0, 1, 2, or many arguments to a “binary” operator
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Special forms

Regular call expressions evaluate all argument exprs
(including function expr)
then invoke function value passing argument values

« all user-defined procedures work this way

Special forms are special “functions” where arguments aren’t
all treated as expressions to be evaluated first

« can define new special forms using macros

Example:
(define x 0)
(define y 5)
(if (=x0) 0(/yx)) - 0
(define (my-if test then el se)
(if test then else))
(nmy-if (=x0) 0 (/ y x)) - error!

Other special forms

cond: likei f -el sei f -...-el se chain:
(cond ((> x 0) 1)

((=x0) 0)

(else -1))

Short-circuiting and and or (like ML's andal so and or el se)
(or (=x0) (>(/ yx)5 ...)

| et : “simultaneous” local variable bindings:
(define x 1) (define y 2) (define z 3)
(let ((x 5)

(y (+34))

(z (+ xy z)))
(+ xy z)) -~ 5+7+(1+2+3) =18

| et *: “sequential” local variable bindings (like ML's | et ):

(define-syntax ny-if (let* ((x 5)
(syntax-rules () (y (+34))
((ny-if test then el se) (z (+ xy z)))
(if test then else)))) (+ xy 2)) - B+7+(5+7+3) =27
(ny-if (=x0) 0(/yx)) - 0
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Lists Dynamic typing

Translation between ML and Scheme

ML Scheme

ni | )

X i XS (cons x xs)
[x, vy, z] (list xy z)
hd(1 st) (car Ist)
tl(lst) (cdr 1Ist)
nul | (Ist) (nul'l? Ist)
Examples:

(define Ist (list 56 7 8)) - (567 8)
(define Ist2 (cons 4 Ist)) - (456 7 8)
(+ (car Ist) (car Ist2)) - 9

(define Ist3 (cdr Ist)) - (6 7 8)

« Ist,lst2,andl st 3 have shared subpieces
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There are no static types, neither explicit nor inferred
Any variable, and any data structure, can hold any type of value
Values have (run-time) types, variables are typeless

Typechecking is performed only when absolutely necessary
E.g.

¢ car &cdr check that argument is a cons cell, and

« + checks that arguments are numbers, but

e cons and | i st check nothing!

Lists can be heterogenous:
(list 3 4.5 () "hi" (list 3 5))
- (3 4.5 () "hi" (35))
« lists in Scheme subsume both tuples and lists in ML

E.g. an association list of key-value pairs:
(define Zips (list (list "Seattle" 98195)
(l'ist "Boston" 02115)
(l'ist "Reston" 22091)))
- (("Seattle" 98195)
(" Boston" 02115)
("Reston" 22091))
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Type testing

Programs can test the type of values at run-time

Some type-testing predicates:
nul | ?

pair?

synbol ?

bool ean?

nunber? integer?
string?
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Quoting

List literals via quot e or ' special form:

(list 3 (list 4 5) 6) - (3 (4 5) 6)
(quote (3 (4 5) 6)) - (3 (4 5) 6)
"(3 (45) 6) - (3 (45) 6)

Quoted identifiers are symbol constants:
' positive - positive
(car "(if (>ab) 34)) - if

Programs and data share same regular syntax

Makes it very easy to write programs that
build, take apart, and transform programs
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