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Formal Semantics

Why formalize?

• some language features are tricky,
e.g. generalizable type variables, nested functions

• some features have subtle interactions,
e.g. polymorphism and mutable references

• some aspects often overlooked in informal descriptions,
e.g. evaluation order, handling of errors

Want a clear and unambiguous specification that can be used by 
language designers and language implementors
(and programmers when necessary)

Ideally, would allow rigorous proof of

• desired language properties, e.g. safety

• correctness of implementation techniques
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Aspects to formalize

Syntax: what’s a syntactically well-formed program?

• formalize by a context-free grammar, e.g. in EBNF notation

Static semantics:
which syntactically well-formed programs are also 
semantically well-formed?

• i.e., name resolution, type checking, etc.

• formalize using typing rules, well-formedness judgments

Dynamic semantics:
to what does a semantically well-formed program evaluate?

• i.e., run-time behavior of a type-correct program

• formalize using operational, denotation, and/or axiomatic 
semantics rules

Metatheory:
what are the properties of the formalization itself?

• e.g., is static semantics sound w.r.t. dynamic semantics?
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Approach

Formalizing & proving properties about a full language
is very hard, very tedious

• many, many cases to consider

• lots of interacting features

Better approach:
boil full-sized language down into its essential core, then 
formalize and study the core

• cut out much of the complication as possible,
without losing the key parts that need formal study

• hope that insights gained about the core
carry over to the full language

Can study language features in stages:

• a very tiny core

• then extend with an additional feature

• then extend again (or separately)
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Lambda calculus

The tiniest core of a functional programming language

• Alonzo Church, 1930s

The foundation for all formal study of programming languages

Outline of study:

• untyped λ-calculus:
syntax, dynamic semantics, properties

• simply typed λ-calculus:
also static semantics, soundness

• standard extensions to λ-calculus:
syntax, dynamic semantics, static semantics

• polymorphic λ-calculus:
syntax, dynamic semantics, static semantics
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Untyped λ-calculus: syntax

Syntax:

E : : = λI.  E function / abstraction
|  E E call / application
|  I variable

[That’s it!]

Application binds tighter than .

Can freely parenthesize as needed

Example (with minimum parens):

( λx.  λy.  x  y)  λz. z

ML analogue (if ignore types):

( fn x => ( fn y => x  y) )  ( fn z => z)

Trees described by this grammar are called term trees

Craig Chambers 169 CSE 505

Free and bound variables

λI. E binds I in E

An occurrence of a variable I is free in an expression E
if it’s not bound by some enclosing lambda in E

FV(E): set of free variables in E

FV(I) = {I}
FV(λI. E) = FV(E) - {I}
FV(E1 E2) = FV(E1) ∪ FV(E2)

FV(E) = ∅ ⇔ E is closed
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α-renaming

First semantic property of λ-calculus:
a bound variable in a term tree (and all its references) can be 
renamed without affecting the semantics of the term tree

• cannot rename free variables

Precise definition:

α-equivalence: λI1. E ⇔  λI2. [ I2/ I1] E (if I2 ∉ FV(E))

[ E2/ I] E1: substitute all free occurrences of I in E1 with E2

• (formalized soon)

Since names of bound variables “don’t matter”, it’s convenient
to treat all α-equivalent term trees as a single term

• define all later semantics for terms

• can assume that all bound variables are distinct

• for any particular term tree, do α-renaming to make this so
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Evaluation, β-reduction

Define how a λ-calculus program “runs” via
a set of rewrite rules, a.k.a. reductions

• “E1 → E2” means “E1 reduces to E2 in one step”

One rule: ( λI. E1) E2 → [ E2/ I] E1

• “applying a function to an argument expression
reduces to the function’s body after substituting the 
argument expression for the function’s formal”

• this rule is called the β-reduction rule

Other rules state that the β-reduction rule can be applied to 
nested subexpressions, too

• (formalized later)

Define how a λ-calculus program “runs” to compute a final result 
as the reflexive, transitive closure of one-step reduction

• “E →∗ V” means “E reduces to result value V”

• (formalized later)

That’s it!
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Examples
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Substitution

Substitution is suprisingly tricky

• must avoid changing the meaning of any variable reference,
in either substitutee or substituted expressions

• “capture-avoiding substitution”

Define formally by cases, over the syntax of the substitutee:

• identifiers:

[ E2/ I] I = E2

[ E2/ I] J = J (if J ≠ I)

• applications:

[ E2/ I] ( E1 E3)  = ( [ E2/ I] E1)  ( [ E2/ I] E3)

• abstractions:

[ E2/ I] ( λI. E)  = λI. E

[ E2/ I] ( λJ. E)  = λJ. [ E2/ I] E

(if J ≠ I and J ∉ FV(E2))

• use α-renaming on ( λJ. E)  to ensure J ∉ FV(E2)

Defines the scoping rules of the λ-calculus
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Normal forms

E →∗ V:  E evaluates fully to a value V

• →∗ defined as the reflexive, transitive closure of → 

What is V? 
an expression with no opportunities for β-reduction

• such expressions are called normal forms

Can define formally:

V : : = λI. V
|  I V
|  I

(I.e., any E except one containing ( λI. E1) E2 somewhere)

Q: does every λ-calculus term have a normal form?

Q: is a term’s normal form unique?
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Reduction order

Can have several places in an expression where
a lambda is applied to an argument

• each is called a redex

( λx. ( λy. x)  x)  ( ( λz. z)  ( λw. ( λv. v)  w) )

Therefore, have a choice in what reduction to make next

Which one is the right one to choose to reduce next?

Does it matter?

• to the final result?

• to how long it takes to compute it?

• to whether the result is computed at all?
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Some possible reduction strategies

Example:

( λx. ( λy. x)  x)  ( ( λz. z)  ( λw. ( λv. v)  w) )

normal-order reduction:
always choose leftmost, outermost redex

• call-by-name, lazy evaluation:
same, and ignore redexes underneath λ

applicative-order reduction:
always choose leftmost, outermost redex
whose argument is in normal form

• call-by-value, eager evaluation:
same, and ignore redexes underneath λ 

Again, does it matter?

• to the final result?

• to how long it takes to compute it?

• to whether the result is computed at all?
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Amazing fact #1: Church-Rosser Thm., Part 1

Thm (Confluence). If e1 →∗ e2 and e1 →∗ e3,

then ∃ e4 s.t. e2 →∗ e4 and e3 →∗ e4.

Corollary (Normalization). Every term has a unique normal 
form, if it exists

• No matter what reduction order is used!

Proof? [e.g. by contradiction]

e1

e2 e3

e4
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Existence of normal form?

Does every term have a normal form?

• (If it does, we already know it’s unique)

Consider:

( λx. x  x)  ( λx. x x)
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Amazing fact #2: Church-Rosser Thm., Part 2

Thm. If a term has a normal form, then
normal-order reduction will find it!

• applicative-order reduction might not!

Example:

( λx. ( λy. y) )  ( ( λz. z z)  ( λz. z z) )

Same example, but using abbreviations:

id ≡ ( λy. y)

loop ≡ ( ( λz. z z)  ( λz. z  z) )

( λx. id)  loop

(Abbreviations are not really in the λ-calculus;
expand away textually before evaluating)

Q: How can I tell whether a term has a normal form?
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Amazing fact #3: λ-calculus is Turing-complete!

Can translate any Turing machine program into
an equivalent λ-calculus program, and vice versa

But how?

λ-calculus lacks:

• functions with multiple arguments

• numbers and arithmetic

• booleans and conditional branches

• data structures

• local variables

• recursive definitions and loops

All it’s got are one-argument, non-recursive functions...
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Multiple arguments, via currying

Encode multiple arguments by currying

λ( X, Y) . E � λX. ( λY. E)

E( E1, E2)   � ( E E1)  E2

Multiple arguments can be had via a syntactic sugar,
so they’re not essential,
and they can be dropped from the core language
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Church numerals

Encode natural numbers using stylized λ terms

zero ≡ ( λs. λz. z) ≡ ( λs. λz. s0 z)

one ≡ ( λs. λz. s z) ≡ ( λs. λz. s1 z)

two ≡ ( λs. λz. s ( s z) ) ≡ ( λs. λz. s2 z)

. . .

N ≡ ( λs. λz. sN z)

(N is the λ-calculus encoding of the mathematical number N)

A unary representation of numbers,
but one that can be used to do computation

• a “number” N is a function that applies
a “successor” function (s ) N times to a “zero” value (z )
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Arithmetic on Church numerals

A basic arithmetic function: succ

• succ N →∗ N+1

Definition:

succ ≡ ( λn.  λs. λz. s ( n s  z) )

Examples:

succ zero

= ( λn. λs. λz. s  ( n s z) )  ( λs ’ . λz ’ . z ’ )

→ ( λs. λz. s ( ( λs’ . λz’ . z ’ )  s  z) )

→ ( λs. λz. s ( ( λz’ . z ’ )  z) )

→ ( λs. λz. s z)  = one

succ two

= ( λn. λs. λz. s  ( n s z) )  ( λs ’ . λz ’ . s ’  ( s ’  z ’ ) )

→ ( λs. λz. s ( ( λs’ . λz’ . s ’  ( s ’  z ’ ) )  s  z) )

→ ( λs. λz. s ( ( λz’ . s ( s  z ’ ) )  z) )

→ ( λs. λz. s ( s ( s z) ) )  = three
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Addition

Another basic arithmetic function: add

• add X Y →∗ X+Y

Algorithm: to add X to Y, apply succ to Y X times

Key trick: X is a function that applies its first argument to its 
second argument X times

• “a number is as a number does”

Definition:

add ≡ ( λx. λy. x  succ y)

Example:

add two three = ( λx. λy. x  succ y)  two three

→∗ two succ three = ( λs. λz. s ( s  z) )  succ three

→∗ succ ( succ three)

→∗ five

(pr ed is tricky, but doable; sub then is similar to add)
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Multiplication

Another basic arithmetic function: mul

• mul X Y →∗ X*Y

Craig Chambers 186 CSE 505

Booleans and conditionals

How to make choices? We only have functions...

Key idea:
true and false are encoded as functions that work differently

• call the boolean value to control evaluation

true  ≡ ( λt . λe. t )

false ≡ ( λt . λe. e)

if ≡ ( λb. λt . λe. b t  e)

Example:

if false loop three

= ( λb. λt . λe. b t  e)  false loop three

→∗ false loop three = ( λt . λe. e)  loop three

→∗ three
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Testing numbers

To complete Peano arithmetic, need an i sZer o predicate

• isZero N →∗ N=0

Idea: implement by calling the number on a successor function 
that always returns false and a zero value that is true

Definition:

isZero ≡ ( λn. n ( λx. false)  true)

Examples:

isZero zero = ( λn. n ( λx. false)  true)  zero

→ ( λs ’ . λz ’ . z ’ )  ( λx. false)  true

→∗ true

isZero two = ( λn. n ( λx. false)  true)  two

→ ( λs ’ . λz ’ . s ’  ( s ’  z ’ ) )  ( λx. false)  true

→∗ ( λx. false)  ( ( λx. false)  true)

→ false
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Data structures

E.g., pairs

Idea: a pair is a function that remembers its two parts
(via lexical scoping & closures)

• pair function takes a selector function that’s
passed both parts and then chooses one

pair ≡ ( λf . λs. λb. b f  s)

fst  ≡ ( λp. p ( λf . λs. f ) )

snd ≡ ( λp. p ( λf . λs. s) )

Examples:

pair true four = ( λf . λs. λb. b f  s)  true four

→∗ ( λb. b true four)

snd ( pair true four)  = ( λp. p ( λf . λs. s) )  ( p t f)

→ ( pair true four)  ( λf . λs. s)

→∗ ( λb. b true four)  ( λf . λs. s)

→ ( λf . λs. s)  true four

→∗ four
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Local variables

Encode let using functions

let I = E1 in E2 � ( λI. E2)  E1

Example:

let x = one in
let y  = two in
add x  y

�

( λx. ( λy. add x y)  two)  one

Doesn’t handle recursive declarations, though:

let f act  = . . .  f ac t  . . .  in
f ac t  two

�

( λf ac t . f ac t  two)  ( . . .  f ac t  . . . )
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Loops and recursion

We’ve seen that we can write infinite loops in the λ-calculus

loop ≡ ( ( λz. z z)  ( λz. z  z) )

Can we write useful loops?

I.e., can we write recursive functions?

The l et  encoding won’t work, as we saw

How about this?

fact ≡ ( λn.
if ( isZero n)  one
 ( mul n ( fact ( pred n) ) ) )
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Amazing fact #4:
Can define recursive functions non-recursively!

Step 1: replace the bogus recursive reference with an explicit 
argument

factG ≡ ( λf act . λn.
if ( isZero n)  one
 ( mul n ( f act  ( pred n) ) ) )

Step 2: use the “paradoxical Y combinator” to pass factG to 
itself in a funky way to yield plain fact

fact ≡ ( Y factG)

Now all we have to do is write Y in the raw λ-calculus
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The Y combinator

A definition of Y:

Y ≡ ( λf . ( λx. f  ( x x) )  ( λx. f  ( x  x) ) )

Example:

Y fG = ( λf . ( λx. f  ( x x) )  ( λx’ . f  ( x ’  x ’ ) ) )  fG

→ ( λx. fG ( x x) )  ( λx’ . fG ( x ’  x ’ ) )

→ fG ( ( λx’ . fG ( x ’  x ’ ) )  ( λx ’ . fG ( x ’  x ’ ) ) ) )

= fG ( Y fG)

So: ( Y fG)  reduces to a call to fG, whose argument is an 
expression that, if evaluated inside fG, will reinvoke fG again 
with the same argument

• normal-order evaluation will only reduce “recursive” 
argument ( Y fG)  on demand, as needed
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Example

A concrete example:

factG ≡ ( λf act . λn.
if ( isZero n)  one
 ( mul n ( f act  ( pred n) ) ) )

fact ≡ ( Y factG)

( *  Y fG →∗ fG ( Y fG)  * )

fact two = Y factG two

→∗ factG ( Y factG)  two

→∗ if ( isZero two)  one
( mul two ( ( Y factG)  ( pred two) ) )  

→∗ mul two ( ( Y factG)  ( pred two) )

[doing some applicative-order reduction, for simplicity]

→∗ mul two ( factG ( Y factG)  one)

→∗ mul two
( if ( isZero one)  one

( mul one ( ( Y factG)  ( pred one) ) ) )

→∗ mul two
( mul one ( ( Y factG)  ( pred one) ) )

→∗ mul two ( mul one
( if ( isZero zero)  one ( mul  zer o . . . ) ) )

→∗ mul two ( mul one one)  →∗ two
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Letrec

Can now define a recursive version of l et :

letrec I = E1 in E2 � let I = Y ( λI. E1)  in E2
• can now reference I recursively inside E1

Example:

letrec

f ac t  = ( λn.  if ( isZero n)  one
( mul n ( f ac t  ( pred n) ) ) )

in
. . .  f act  . . .
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Summary, so far

Saw untyped λ-calculus

Saw α-renaming, β-reduction rules

• both relied on capture-avoiding substitution

• α-renaming defined families of equivalent term trees

• name choice of formals doesn’t matter to semantics

• β-reduction defined “evaluation” of a λ-calculus “program”

• normal forms: no more β-reduction possible
the “results” of a “program”

• reduction strategies such as normal-order & applicative-order 
had different termination properties, but not different results

Church-Rosser: key confluence & normalization thms.

Turing-completeness of untyped λ-calculus suggested by 
successfully encoding many standard PL features


