
Craig Chambers 164 CSE 505

Formal Semantics

Why formalize?

• some language features are tricky,
e.g. generalizable type variables, nested functions

• some features have subtle interactions,
e.g. polymorphism and mutable references

• some aspects often overlooked in informal descriptions,
e.g. evaluation order, handling of errors

Want a clear and unambiguous specification that can be used by
language designers and language implementors
(and programmers when necessary)

Ideally, would allow rigorous proof of

• desired language properties, e.g. safety

• correctness of implementation techniques

Craig Chambers 165 CSE 505

Aspects to formalize

Syntax: what’s a syntactically well-formed program?

• formalize by a context-free grammar, e.g. in EBNF notation

Static semantics:
which syntactically well-formed programs are also
semantically well-formed?

• i.e., name resolution, type checking, etc.

• formalize using typing rules, well-formedness judgments

Dynamic semantics:
to what does a semantically well-formed program evaluate?

• i.e., run-time behavior of a type-correct program

• formalize using operational, denotation, and/or axiomatic
semantics rules

Metatheory:
what are the properties of the formalization itself?

• e.g., is static semantics sound w.r.t. dynamic semantics?

Craig Chambers 166 CSE 505

Approach

Formalizing & proving properties about a full language
is very hard, very tedious

• many, many cases to consider

• lots of interacting features

Better approach:
boil full-sized language down into its essential core, then
formalize and study the core

• cut out much of the complication as possible,
without losing the key parts that need formal study

• hope that insights gained about the core
carry over to the full language

Can study language features in stages:

• a very tiny core

• then extend with an additional feature

• then extend again (or separately)

Craig Chambers 167 CSE 505

Lambda calculus

The tiniest core of a functional programming language

• Alonzo Church, 1930s

The foundation for all formal study of programming languages

Outline of study:

• untyped λ-calculus:
syntax, dynamic semantics, properties

• simply typed λ-calculus:
also static semantics, soundness

• standard extensions to λ-calculus:
syntax, dynamic semantics, static semantics

• polymorphic λ-calculus:
syntax, dynamic semantics, static semantics

Craig Chambers 168 CSE 505

Untyped λ-calculus: syntax

Syntax:

E : : = λI. E function / abstraction
| E E call / application
| I variable

[That’s it!]

Application binds tighter than .

Can freely parenthesize as needed

Example (with minimum parens):

(λx. λy. x y) λz. z

ML analogue (if ignore types):

(fn x => (fn y => x y)) (fn z => z)

Trees described by this grammar are called term trees

Craig Chambers 169 CSE 505

Free and bound variables

λI. E binds I in E

An occurrence of a variable I is free in an expression E
if it’s not bound by some enclosing lambda in E

FV(E): set of free variables in E

FV(I) = {I}
FV(λI. E) = FV(E) - {I}
FV(E1 E2) = FV(E1) ∪ FV(E2)

FV(E) = ∅ ⇔ E is closed

Craig Chambers 170 CSE 505

α-renaming

First semantic property of λ-calculus:
a bound variable in a term tree (and all its references) can be
renamed without affecting the semantics of the term tree

• cannot rename free variables

Precise definition:

α-equivalence: λI1. E ⇔ λI2. [I2/ I1] E (if I2 ∉ FV(E))

[E2/ I] E1: substitute all free occurrences of I in E1 with E2

• (formalized soon)

Since names of bound variables “don’t matter”, it’s convenient
to treat all α-equivalent term trees as a single term

• define all later semantics for terms

• can assume that all bound variables are distinct

• for any particular term tree, do α-renaming to make this so

Craig Chambers 171 CSE 505

Evaluation, β-reduction

Define how a λ-calculus program “runs” via
a set of rewrite rules, a.k.a. reductions

• “E1 → E2” means “E1 reduces to E2 in one step”

One rule: (λI. E1) E2 → [E2/ I] E1

• “applying a function to an argument expression
reduces to the function’s body after substituting the
argument expression for the function’s formal”

• this rule is called the β-reduction rule

Other rules state that the β-reduction rule can be applied to
nested subexpressions, too

• (formalized later)

Define how a λ-calculus program “runs” to compute a final result
as the reflexive, transitive closure of one-step reduction

• “E →∗ V” means “E reduces to result value V”

• (formalized later)

That’s it!

Craig Chambers 172 CSE 505

Examples

Craig Chambers 173 CSE 505

Substitution

Substitution is suprisingly tricky

• must avoid changing the meaning of any variable reference,
in either substitutee or substituted expressions

• “capture-avoiding substitution”

Define formally by cases, over the syntax of the substitutee:

• identifiers:

[E2/ I] I = E2

[E2/ I] J = J (if J ≠ I)

• applications:

[E2/ I] (E1 E3) = ([E2/ I] E1) ([E2/ I] E3)

• abstractions:

[E2/ I] (λI. E) = λI. E

[E2/ I] (λJ. E) = λJ. [E2/ I] E

(if J ≠ I and J ∉ FV(E2))

• use α-renaming on (λJ. E) to ensure J ∉ FV(E2)

Defines the scoping rules of the λ-calculus

Craig Chambers 174 CSE 505

Normal forms

E →∗ V: E evaluates fully to a value V

• →∗ defined as the reflexive, transitive closure of →

What is V?
an expression with no opportunities for β-reduction

• such expressions are called normal forms

Can define formally:

V : : = λI. V
| I V
| I

(I.e., any E except one containing (λI. E1) E2 somewhere)

Q: does every λ-calculus term have a normal form?

Q: is a term’s normal form unique?

Craig Chambers 175 CSE 505

Reduction order

Can have several places in an expression where
a lambda is applied to an argument

• each is called a redex

(λx. (λy. x) x) ((λz. z) (λw. (λv. v) w))

Therefore, have a choice in what reduction to make next

Which one is the right one to choose to reduce next?

Does it matter?

• to the final result?

• to how long it takes to compute it?

• to whether the result is computed at all?

Craig Chambers 176 CSE 505

Some possible reduction strategies

Example:

(λx. (λy. x) x) ((λz. z) (λw. (λv. v) w))

normal-order reduction:
always choose leftmost, outermost redex

• call-by-name, lazy evaluation:
same, and ignore redexes underneath λ

applicative-order reduction:
always choose leftmost, outermost redex
whose argument is in normal form

• call-by-value, eager evaluation:
same, and ignore redexes underneath λ

Again, does it matter?

• to the final result?

• to how long it takes to compute it?

• to whether the result is computed at all?

Craig Chambers 177 CSE 505

Amazing fact #1: Church-Rosser Thm., Part 1

Thm (Confluence). If e1 →∗ e2 and e1 →∗ e3,

then ∃ e4 s.t. e2 →∗ e4 and e3 →∗ e4.

Corollary (Normalization). Every term has a unique normal
form, if it exists

• No matter what reduction order is used!

Proof? [e.g. by contradiction]

e1

e2 e3

e4

Craig Chambers 178 CSE 505

Existence of normal form?

Does every term have a normal form?

• (If it does, we already know it’s unique)

Consider:

(λx. x x) (λx. x x)

Craig Chambers 179 CSE 505

Amazing fact #2: Church-Rosser Thm., Part 2

Thm. If a term has a normal form, then
normal-order reduction will find it!

• applicative-order reduction might not!

Example:

(λx. (λy. y)) ((λz. z z) (λz. z z))

Same example, but using abbreviations:

id ≡ (λy. y)

loop ≡ ((λz. z z) (λz. z z))

(λx. id) loop

(Abbreviations are not really in the λ-calculus;
expand away textually before evaluating)

Q: How can I tell whether a term has a normal form?

Craig Chambers 180 CSE 505

Amazing fact #3: λ-calculus is Turing-complete!

Can translate any Turing machine program into
an equivalent λ-calculus program, and vice versa

But how?

λ-calculus lacks:

• functions with multiple arguments

• numbers and arithmetic

• booleans and conditional branches

• data structures

• local variables

• recursive definitions and loops

All it’s got are one-argument, non-recursive functions...

Craig Chambers 181 CSE 505

Multiple arguments, via currying

Encode multiple arguments by currying

λ(X, Y) . E � λX. (λY. E)

E(E1, E2) � (E E1) E2

Multiple arguments can be had via a syntactic sugar,
so they’re not essential,
and they can be dropped from the core language

Craig Chambers 182 CSE 505

Church numerals

Encode natural numbers using stylized λ terms

zero ≡ (λs. λz. z) ≡ (λs. λz. s0 z)

one ≡ (λs. λz. s z) ≡ (λs. λz. s1 z)

two ≡ (λs. λz. s (s z)) ≡ (λs. λz. s2 z)

. . .

N ≡ (λs. λz. sN z)

(N is the λ-calculus encoding of the mathematical number N)

A unary representation of numbers,
but one that can be used to do computation

• a “number” N is a function that applies
a “successor” function (s) N times to a “zero” value (z)

Craig Chambers 183 CSE 505

Arithmetic on Church numerals

A basic arithmetic function: succ

• succ N →∗ N+1

Definition:

succ ≡ (λn. λs. λz. s (n s z))

Examples:

succ zero

= (λn. λs. λz. s (n s z)) (λs ’ . λz ’ . z ’)

→ (λs. λz. s ((λs’ . λz’ . z ’) s z))

→ (λs. λz. s ((λz’ . z ’) z))

→ (λs. λz. s z) = one

succ two

= (λn. λs. λz. s (n s z)) (λs ’ . λz ’ . s ’ (s ’ z ’))

→ (λs. λz. s ((λs’ . λz’ . s ’ (s ’ z ’)) s z))

→ (λs. λz. s ((λz’ . s (s z ’)) z))

→ (λs. λz. s (s (s z))) = three

Craig Chambers 184 CSE 505

Addition

Another basic arithmetic function: add

• add X Y →∗ X+Y

Algorithm: to add X to Y, apply succ to Y X times

Key trick: X is a function that applies its first argument to its
second argument X times

• “a number is as a number does”

Definition:

add ≡ (λx. λy. x succ y)

Example:

add two three = (λx. λy. x succ y) two three

→∗ two succ three = (λs. λz. s (s z)) succ three

→∗ succ (succ three)

→∗ five

(pr ed is tricky, but doable; sub then is similar to add)

Craig Chambers 185 CSE 505

Multiplication

Another basic arithmetic function: mul

• mul X Y →∗ X*Y

Craig Chambers 186 CSE 505

Booleans and conditionals

How to make choices? We only have functions...

Key idea:
true and false are encoded as functions that work differently

• call the boolean value to control evaluation

true ≡ (λt . λe. t)

false ≡ (λt . λe. e)

if ≡ (λb. λt . λe. b t e)

Example:

if false loop three

= (λb. λt . λe. b t e) false loop three

→∗ false loop three = (λt . λe. e) loop three

→∗ three

Craig Chambers 187 CSE 505

Testing numbers

To complete Peano arithmetic, need an i sZer o predicate

• isZero N →∗ N=0

Idea: implement by calling the number on a successor function
that always returns false and a zero value that is true

Definition:

isZero ≡ (λn. n (λx. false) true)

Examples:

isZero zero = (λn. n (λx. false) true) zero

→ (λs ’ . λz ’ . z ’) (λx. false) true

→∗ true

isZero two = (λn. n (λx. false) true) two

→ (λs ’ . λz ’ . s ’ (s ’ z ’)) (λx. false) true

→∗ (λx. false) ((λx. false) true)

→ false

Craig Chambers 188 CSE 505

Data structures

E.g., pairs

Idea: a pair is a function that remembers its two parts
(via lexical scoping & closures)

• pair function takes a selector function that’s
passed both parts and then chooses one

pair ≡ (λf . λs. λb. b f s)

fst ≡ (λp. p (λf . λs. f))

snd ≡ (λp. p (λf . λs. s))

Examples:

pair true four = (λf . λs. λb. b f s) true four

→∗ (λb. b true four)

snd (pair true four) = (λp. p (λf . λs. s)) (p t f)

→ (pair true four) (λf . λs. s)

→∗ (λb. b true four) (λf . λs. s)

→ (λf . λs. s) true four

→∗ four

Craig Chambers 189 CSE 505

Local variables

Encode let using functions

let I = E1 in E2 � (λI. E2) E1

Example:

let x = one in
let y = two in
add x y

�

(λx. (λy. add x y) two) one

Doesn’t handle recursive declarations, though:

let f act = . . . f ac t . . . in
f ac t two

�

(λf ac t . f ac t two) (. . . f ac t . . .)

Craig Chambers 190 CSE 505

Loops and recursion

We’ve seen that we can write infinite loops in the λ-calculus

loop ≡ ((λz. z z) (λz. z z))

Can we write useful loops?

I.e., can we write recursive functions?

The l et encoding won’t work, as we saw

How about this?

fact ≡ (λn.
if (isZero n) one
 (mul n (fact (pred n))))

Craig Chambers 191 CSE 505

Amazing fact #4:
Can define recursive functions non-recursively!

Step 1: replace the bogus recursive reference with an explicit
argument

factG ≡ (λf act . λn.
if (isZero n) one
 (mul n (f act (pred n))))

Step 2: use the “paradoxical Y combinator” to pass factG to
itself in a funky way to yield plain fact

fact ≡ (Y factG)

Now all we have to do is write Y in the raw λ-calculus

Craig Chambers 192 CSE 505

The Y combinator

A definition of Y:

Y ≡ (λf . (λx. f (x x)) (λx. f (x x)))

Example:

Y fG = (λf . (λx. f (x x)) (λx’ . f (x ’ x ’))) fG

→ (λx. fG (x x)) (λx’ . fG (x ’ x ’))

→ fG ((λx’ . fG (x ’ x ’)) (λx ’ . fG (x ’ x ’))))

= fG (Y fG)

So: (Y fG) reduces to a call to fG, whose argument is an
expression that, if evaluated inside fG, will reinvoke fG again
with the same argument

• normal-order evaluation will only reduce “recursive”
argument (Y fG) on demand, as needed

Craig Chambers 193 CSE 505

Example

A concrete example:

factG ≡ (λf act . λn.
if (isZero n) one
 (mul n (f act (pred n))))

fact ≡ (Y factG)

(* Y fG →∗ fG (Y fG) *)

fact two = Y factG two

→∗ factG (Y factG) two

→∗ if (isZero two) one
(mul two ((Y factG) (pred two)))

→∗ mul two ((Y factG) (pred two))

[doing some applicative-order reduction, for simplicity]

→∗ mul two (factG (Y factG) one)

→∗ mul two
(if (isZero one) one

(mul one ((Y factG) (pred one))))

→∗ mul two
(mul one ((Y factG) (pred one)))

→∗ mul two (mul one
(if (isZero zero) one (mul zer o . . .)))

→∗ mul two (mul one one) →∗ two

Craig Chambers 194 CSE 505

Letrec

Can now define a recursive version of l et :

letrec I = E1 in E2 � let I = Y (λI. E1) in E2
• can now reference I recursively inside E1

Example:

letrec

f ac t = (λn. if (isZero n) one
(mul n (f ac t (pred n))))

in
. . . f act . . .

Craig Chambers 195 CSE 505

Summary, so far

Saw untyped λ-calculus

Saw α-renaming, β-reduction rules

• both relied on capture-avoiding substitution

• α-renaming defined families of equivalent term trees

• name choice of formals doesn’t matter to semantics

• β-reduction defined “evaluation” of a λ-calculus “program”

• normal forms: no more β-reduction possible
the “results” of a “program”

• reduction strategies such as normal-order & applicative-order
had different termination properties, but not different results

Church-Rosser: key confluence & normalization thms.

Turing-completeness of untyped λ-calculus suggested by
successfully encoding many standard PL features

