Formal Semantics

Why formalize?

- some language features are tricky,
 e.g. generalizable type variables, nested functions
- some features have subtle interactions,
 e.g. polymorphism and mutable references
- some aspects often overlooked in informal descriptions, e.g. evaluation order, handling of errors

Want a clear and unambiguous specification that can be used by language designers and language implementors (and programmers when necessary)

Ideally, would allow rigorous proof of

- · desired language properties, e.g. safety
- · correctness of implementation techniques

Craig Chambers 164 CSE 505

Aspects to formalize

Syntax: what's a syntactically well-formed program?

• formalize by a context-free grammar, e.g. in EBNF notation

Static semantics:

which *syntactically* well-formed programs are also *semantically* well-formed?

- i.e., name resolution, type checking, etc.
- · formalize using typing rules, well-formedness judgments

Dynamic semantics:

to what does a semantically well-formed program evaluate?

- · i.e., run-time behavior of a type-correct program
- formalize using operational, denotation, and/or axiomatic semantics rules

Metatheory:

what are the properties of the formalization itself?

• e.g., is static semantics sound w.r.t. dynamic semantics?

Craig Chambers 165 CSE 505

Approach

Formalizing & proving properties about a full language is very hard, very tedious

- · many, many cases to consider
- · lots of interacting features

Better approach:

boil full-sized language down into its essential core, then formalize and study the core

- cut out much of the complication as possible, without losing the key parts that need formal study
- hope that insights gained about the core carry over to the full language

Can study language features in stages:

- · a very tiny core
- · then extend with an additional feature
- then extend again (or separately)

Lambda calculus

The tiniest core of a functional programming language

• Alonzo Church, 1930s

The foundation for all formal study of programming languages

Outline of study:

- untyped λ -calculus: syntax, dynamic semantics, properties
- simply typed λ-calculus: also static semantics, soundness
- standard extensions to $\lambda\text{-calculus:}$ syntax, dynamic semantics, static semantics
- polymorphic $\lambda\text{-calculus:}$ syntax, dynamic semantics, static semantics

CSE 505

 Craig Chambers
 166
 CSE 505
 Craig Chambers
 167

Untyped λ-calculus: syntax

Syntax:

[That's it!]

Application binds tighter than .

Can freely parenthesize as needed

Example (with minimum parens):

$$(\lambda x. \lambda y. x y) \lambda z.z$$

ML analogue (if ignore types):

$$(fn x \Rightarrow (fn y \Rightarrow x y)) (fn z \Rightarrow z)$$

Trees described by this grammar are called term trees

Craig Chambers 168 CSE 50

Free and bound variables

 λI . E binds I in E

An occurrence of a variable ${\it I}$ is **free** in an expression ${\it E}$ if it's not bound by some enclosing lambda in ${\it E}$

FV(E): set of free variables in E

$$FV(I) = \{I\}$$

 $FV(\lambda I . E) = FV(E) - \{I\}$
 $FV(E_1 E_2) = FV(E_1) \cup FV(E_2)$

 $FV(E) = \emptyset \iff E \text{ is closed}$

Craig Chambers 169 CSE 505

$\alpha\text{-renaming}$

First semantic property of λ -calculus:

a bound variable in a term tree (and all its references) can be renamed without affecting the semantics of the term tree

· cannot rename free variables

Precise definition:

$$\alpha$$
-equivalence: $\lambda I_1.E \Leftrightarrow \lambda I_2.[I_2/I_1]E$ (if $I_2 \notin FV(E)$)

 $[E_2/I]E_1$: substitute all free occurrences of I in E_1 with E_2

• (formalized soon)

Since names of bound variables "don't matter", it's convenient to treat all α -equivalent term trees as a single **term**

- · define all later semantics for terms
- · can assume that all bound variables are distinct
 - for any particular term tree, do α -renaming to make this so

Evaluation, β-reduction

Define how a λ -calculus program "runs" via a set of rewrite rules, a.k.a. **reductions**

• " $E_1 \rightarrow E_2$ " means " E_1 reduces to E_2 in one step"

One rule: $(\lambda I.E_1)E_2 \rightarrow [E_2/I]E_1$

- "applying a function to an argument expression reduces to the function's body after substituting the argument expression for the function's formal"
- this rule is called the β -reduction rule

Other rules state that the β -reduction rule can be applied to nested subexpressions, too

(formalized later)

Define how a λ-calculus program "runs" to compute a final result as the reflexive, transitive closure of one-step reduction

- "E →* V" means "E reduces to result value V"
- (formalized later)

That's it!

 Craig Chambers
 170
 CSE 505
 Craig Chambers
 171
 CSE 505

Examples

Craig Chambers 172 CSE 505

Substitution

Substitution is suprisingly tricky

- must avoid changing the meaning of any variable reference, in either substitutee or substituted expressions
- "capture-avoiding substitution"

Define formally by cases, over the syntax of the substitutee:

· identifiers:

$$[E_2/I]I = E_2$$
$$[E_2/I]J = J \quad \text{(if } J \neq I\text{)}$$

· applications:

$$[E_2/I](E_1 E_3) = ([E_2/I]E_1) ([E_2/I]E_3)$$

· abstractions:

$$\begin{split} [E_2/I] (\lambda I.E) &= \lambda I.E \\ [E_2/I] (\lambda J.E) &= \lambda J. [E_2/I]E \\ & (\text{if } J \neq I \text{ and } J \notin FV(E_2)) \end{split}$$

• use α -renaming on $(\lambda J.E)$ to ensure $J \notin FV(E_2)$

Defines the scoping rules of the λ -calculus

Craig Chambers 173 CSE 505

Normal forms

 $E \rightarrow^* V$: E evaluates fully to a value V

• \rightarrow^* defined as the reflexive, transitive closure of \rightarrow

What is v?

an expression with no opportunities for β -reduction

• such expressions are called **normal forms**

Can define formally:

$$V ::= \lambda I.V$$

$$\mid I V$$

$$\mid I$$

(I.e., any E except one containing $(\lambda I.E_1)E_2$ somewhere)

Q: does every λ -calculus term have a normal form?

Q: is a term's normal form unique?

Reduction order

Can have several places in an expression where a lambda is applied to an argument

• each is called a redex

$$(\lambda x.(\lambda y.x) x) ((\lambda z.z) (\lambda w.(\lambda v.v) w))$$

Therefore, have a choice in what reduction to make next

Which one is the right one to choose to reduce next?

Does it matter?

- to the final result?
- to how long it takes to compute it?
- to whether the result is computed at all?

Craig Chambers 174 CSE 505

Craig Chambers 175 CSE 505

Some possible reduction strategies

Example:

$$(\lambda x.(\lambda y.x) x) ((\lambda z.z) (\lambda w.(\lambda v.v) w))$$

normal-order reduction:

always choose leftmost, outermost redex

• call-by-name, lazy evaluation: same, and ignore redexes underneath $\boldsymbol{\lambda}$

applicative-order reduction:

always choose leftmost, outermost redex whose argument is in normal form

• call-by-value, eager evaluation: same, and ignore redexes underneath $\boldsymbol{\lambda}$

Again, does it matter?

- to the final result?
- to how long it takes to compute it?
- to whether the result is computed at all?

Craig Chambers 176 CSE 505

Amazing fact #1: Church-Rosser Thm., Part 1

Thm (Confluence). If $e_1 \rightarrow^* e_2$ and $e_1 \rightarrow^* e_3$, then $\exists e_4$ s.t. $e_2 \rightarrow^* e_4$ and $e_3 \rightarrow^* e_4$.

Corollary (**Normalization**). Every term has a **unique** normal form, if it exists

• No matter what reduction order is used!

Proof? [e.g. by contradiction]

Craig Chambers 177 CSE 505

Existence of normal form?

Does every term have a normal form?

• (If it does, we already know it's unique)

Consider:

$$(\lambda x.x x) (\lambda x.x x)$$

Amazing fact #2: Church-Rosser Thm., Part 2

Thm. If a term has a normal form, then normal-order reduction will find it!

• applicative-order reduction might not!

Example:

$$(\lambda x.(\lambda y.y))$$
 $((\lambda z.z z) (\lambda z.z z))$

Same example, but using abbreviations:

$$id \equiv (\lambda y.y)$$

 $loop \equiv ((\lambda z.z z) (\lambda z.z z))$
 $(\lambda x.id) loop$

(Abbreviations are not really in the λ -calculus; expand away textually before evaluating)

Q: How can I tell whether a term has a normal form?

Craig Chambers 178 CSE 505

Craig Chambers 179 CSE 505

Amazing fact #3: λ-calculus is Turing-complete!

Can translate any Turing machine program into an equivalent λ -calculus program, and vice versa

But how?

λ-calculus lacks:

- · functions with multiple arguments
- numbers and arithmetic
- · booleans and conditional branches
- · data structures
- · local variables
- · recursive definitions and loops

All it's got are one-argument, non-recursive functions...

Craig Chambers 180 CSE 505

Multiple arguments, via currying

Encode multiple arguments by currying

$$\lambda(X,Y).E \Rightarrow \lambda X.(\lambda Y.E)$$

 $E(E_1,E_2) \Rightarrow (E E_1) E_2$

Multiple arguments can be had via a syntactic sugar, so they're not essential, and they can be dropped from the core language

Craig Chambers 181 CSE 505

Church numerals

Encode natural numbers using stylized λ terms

```
 zero \equiv (\lambda s.\lambda z.z) \qquad \equiv (\lambda s.\lambda z.s^0 z)  one = (\lambda s.\lambda z.s z) \qquad \equiv (\lambda s.\lambda z.s^1 z)  two = (\lambda s.\lambda z.s (s z)) \qquad \equiv (\lambda s.\lambda z.s^2 z)  ...
 \overline{N} \qquad \equiv (\lambda s.\lambda z.s^N z)
```

 (\overline{N}) is the λ -calculus encoding of the mathematical number N)

A unary representation of numbers, but one that can be used to do computation

 a "number" N is a function that applies a "successor" function (s) N times to a "zero" value (z)

Arithmetic on Church numerals

A basic arithmetic function: succ

• succ $\overline{N} \rightarrow^* \overline{N+1}$

Definition:

$$succ \equiv (\lambda n. \lambda s. \lambda z. s (n s z))$$

Examples:

```
succ zero
```

=
$$(\lambda n.\lambda s.\lambda z.s (n s z)) (\lambda s'.\lambda z'.z')$$

$$\rightarrow$$
 (λ s. λ z.s ((λ s'. λ z'.z') s z))

$$\rightarrow$$
 (λ s. λ z.s ((λ z'.z') z))

$$\rightarrow$$
 (λ s. λ z.s z) = one

succ two

=
$$(\lambda n.\lambda s.\lambda z.s (n s z)) (\lambda s'.\lambda z'.s' (s' z'))$$

$$\rightarrow$$
 ($\lambda s.\lambda z.s$ (($\lambda s'.\lambda z'.s'$ ($s'z'$)) sz))

$$\rightarrow$$
 (λ s. λ z.s ((λ z'.s (s z')) z))

$$\rightarrow$$
 (λ s. λ z.s (s (s z))) = three

Craig Chambers 183 CSE 505

Craig Chambers 182 CSE 505

Addition

Another basic arithmetic function: add

• add $\overline{X} \overline{Y} \rightarrow^* \overline{X+Y}$

Algorithm: to add \overline{X} to \overline{Y} , apply succ to $\overline{Y}X$ times

Key trick: \overline{X} is a function that applies its first argument to its second argument X times

• "a number is as a number does"

Definition:

```
add \equiv (\lambda x. \lambda y. x \ succ \ y)
```

Example:

```
add two three = (\lambda x.\lambda y.x \ succ \ y) two three \rightarrow^* two succ three = (\lambda s.\lambda z.s \ (s \ z)) succ three \rightarrow^* succ (succ three) \rightarrow^* five
```

(pred is tricky, but doable; sub then is similar to add)

Craig Chambers 184 CSE 50

Multiplication

Another basic arithmetic function: mul

• mul
$$\overline{X} \ \overline{Y} \rightarrow^* \ \overline{X^*Y}$$

Craig Chambers 185 CSE 505

Booleans and conditionals

How to make choices? We only have functions...

Key idea:

true and false are encoded as functions that work differently

• call the boolean value to control evaluation

```
true \equiv (\lambda t.\lambda e.t)
false \equiv (\lambda t.\lambda e.e)
if \equiv (\lambda b.\lambda t.\lambda e.b t e)
```

Example:

Craig Chambers

```
if false loop three = (\lambda b.\lambda t.\lambda e.b t e) false loop three \rightarrow^* false loop three = (\lambda t.\lambda e.e) loop three \rightarrow^* three
```

CSE 505

Testing numbers

To complete Peano arithmetic, need an isZero predicate

• isZero
$$\overline{N} \rightarrow^* \overline{N=0}$$

Idea: implement by calling the number on a successor function that always returns false and a zero value that is true

Definition:

```
isZero \equiv (\lambda n.n (\lambda x.false) true)
```

Examples:

 $isZero zero = (\lambda n.n (\lambda x.false) true) zero$

Craig Chambers 187 CSE 505

Data structures

E.g., pairs

Idea: a pair is a function that remembers its two parts (via lexical scoping & closures)

 pair function takes a selector function that's passed both parts and then chooses one

```
pair \equiv (\lambda f.\lambda s.\lambda b.b f s)
fst \equiv (\lambda p.p (\lambda f.\lambda s.f))
snd \equiv (\lambda p.p (\lambda f.\lambda s.s))
```

Examples:

Craig Chambers

```
pair true four = (\lambda f.\lambda s.\lambda b.b f s) true four \rightarrow^* (\lambda b.b true four)

snd (pair true four) = (\lambda p.p (\lambda f.\lambda s.s)) (p t f) \rightarrow (pair true four) (\lambda f.\lambda s.s) \rightarrow^* (\lambda b.b true four) (\lambda f.\lambda s.s) \rightarrow (\lambda f.\lambda s.s) true four \rightarrow^* four
```

Local variables

Encode let using functions

```
 \textbf{let} \ \textit{I} \ \textbf{=} \ \textit{E}_1 \ \textbf{in} \ \textit{E}_2 \quad \Rightarrow \quad (\lambda \textit{I} . \textit{E}_2) \ \textit{E}_1
```

Example:

```
let x = one in
  let y = two in
    add x y

⇒
  (\lambda x.(\lambda y.add x y) two) one
```

Doesn't handle recursive declarations, though:

```
let fact = ... fact ... in
  fact two

⇒
  (λfact.fact two) (... fact ...)
```

Craig Chambers 189 CSE 505

Loops and recursion

We've seen that we can write infinite loops in the λ -calculus

```
loop \equiv ((\lambda z.z z) (\lambda z.z z))
```

Can we write useful loops?

I.e., can we write recursive functions?

The let encoding won't work, as we saw

How about this?

```
fact = (\lambda n.
  if (isZero n) one
      (mul n (fact (pred n))))
```

Amazing fact #4:

Can define recursive functions non-recursively!

Step 1: replace the bogus recursive reference with an explicit argument

```
factG \equiv (\lambda fact.\lambda n.

if (isZero n) one

(mul n (fact (pred n))))
```

Step 2: use the "paradoxical Y combinator" to pass factG to itself in a funky way to yield plain fact

```
fact \equiv (Y \ factG)
```

Now all we have to do is write ${\tt Y}$ in the raw $\lambda\text{-calculus}$

Craig Chambers 190 CSE 505

Craig Chambers 191 CSE 505

The Y combinator

A definition of Y:

```
Y \equiv (\lambda f.(\lambda x.f(x x))(\lambda x.f(x x)))
```

Example:

```
Y fG = (\lambda f.(\lambda x.f (x x)) (\lambda x'.f (x' x'))) fG
\rightarrow (\lambda x.fG (x x)) (\lambda x'.fG (x' x'))
\rightarrow fG ((\lambda x'.fG (x' x')) (\lambda x'.fG (x' x'))))
= fG (Y fG)
```

So: $(Y \ fG)$ reduces to a call to fG, whose argument is an expression that, if evaluated inside fG, will reinvoke fG again with the same argument

• normal-order evaluation will only reduce "recursive" argument (Y fG) on demand, as needed

Craig Chambers 192 CSE 50.

Example

A concrete example:

```
factG \equiv (\lambda fact.\lambda n.
 if (isZero n) one
      (mul n (fact (pred n))))
fact \equiv (Y factG)
(* Y fG \rightarrow^* fG (Y fG) *)
fact two = Y factG two
  \rightarrow^* factG (Y factG) two
  \rightarrow^* if (isZero two) one
           (mul two ((Y factG) (pred two)))
  \rightarrow^* mul two ((Y factG) (pred two))
[doing some applicative-order reduction, for simplicity]
  \rightarrow^* mul two (factG (Y factG) one)
  \rightarrow^* mul two
         (if (isZero one) one
              (mul one ((Y factG) (pred one))))
  \rightarrow^* mul two
        (mul one ((Y factG) (pred one)))
  \rightarrow^* mul two (mul one
        (if (isZero zero) one (mul zero ...)))
  \rightarrow^* mul two (mul one one) \rightarrow^* two
```

Letrec

Can now define a recursive version of let:

```
letrec I = E_1 in E_2 \Rightarrow let I = Y (\lambda I.E_1) in E_2
```

• can now reference ${\it I}$ recursively inside ${\it E}_{\it 1}$

Example:

letrec

Summary, so far

Craig Chambers

Saw untyped λ-calculus

Saw α -renaming, β -reduction rules

- both relied on capture-avoiding substitution
- α -renaming defined families of equivalent term trees
 - name choice of formals doesn't matter to semantics
- β -reduction defined "evaluation" of a λ -calculus "program"

CSE 505

- normal forms: no more β-reduction possible the "results" of a "program"
- reduction strategies such as normal-order & applicative-order had different termination properties, but not different results

Church-Rosser: key confluence & normalization thms.

Turing-completeness of untyped λ -calculus suggested by successfully encoding many standard PL features

Craig Chambers 194 CSE 505

Craig Chambers 195 CSE 505