Formal Semantics

Why formalize?

« some language features are tricky,
e.g. generalizable type variables, nested functions

« some features have subtle interactions,
e.g. polymorphism and mutable references

« some aspects often overlooked in informal descriptions,
e.g. evaluation order, handling of errors

Want a clear and unambiguous specification that can be used by
language designers and language implementors
(and programmers when necessary)

Ideally, would allow rigorous proof of

« desired language properties, e.g. safety
« correctness of implementation techniques

Craig Chambers 164 CSE 505

Aspects to formalize

Syntax: what's a syntactically well-formed program?
« formalize by a context-free grammar, e.g. in EBNF notation

Static semantics:
which syntactically well-formed programs are also
semantically well-formed?

 i.e., name resolution, type checking, etc.
« formalize using typing rules, well-formedness judgments

Dynamic semantics:
to what does a semantically well-formed program evaluate?

« i.e., run-time behavior of a type-correct program

« formalize using operational, denotation, and/or axiomatic
semantics rules

Metatheory:
what are the properties of the formalization itself?

* e.g., is static semantics sound w.r.t. dynamic semantics?

Craig Chambers 165 CSE 505

Approach

Formalizing & proving properties about a full language
is very hard, very tedious

¢ many, many cases to consider
« lots of interacting features

Better approach:
boil full-sized language down into its essential core, then
formalize and study the core

« cut out much of the complication as possible,
without losing the key parts that need formal study

« hope that insights gained about the core
carry over to the full language

Can study language features in stages:
* avery tiny core
« then extend with an additional feature
« then extend again (or separately)

Craig Chambers 166 CSE 505

Lambda calculus

The tiniest core of a functional programming language
* Alonzo Church, 1930s

The foundation for all formal study of programming languages

Outline of study:

« untyped A-calculus:
syntax, dynamic semantics, properties

« simply typed A-calculus:
also static semantics, soundness

« standard extensions to A-calculus:
syntax, dynamic semantics, static semantics

¢ polymorphic A-calculus:
syntax, dynamic semantics, static semantics

Craig Chambers 167 CSE 505

Untyped A-calculus: syntax

Syntax:
E =Al. E function / abstraction
| EE call / application
| 1 variable
[That's it!]

Application binds tighter than .
Can freely parenthesize as needed

Example (with minimum parens):
(AX. Ay. X y) Az.z

ML analogue (if ignore types):

(fn x = (fny =>x1y)) (fn z => 2)

Trees described by this grammar are called term trees

Craig Chambers 168 CSE 505

Free and bound variables

Al . Ebinds | inE

An occurrence of a variable | is free in an expression E
if it's not bound by some enclosing lambda in E

FV(E): set of free variables in E
Fv()={1}

FV(\l . E) = FV(E) - {1 }
FV(E; Ep)=FV(E;) O FV(E,)

FV(E)=0 - Eisclosed

Craig Chambers 169 CSE 505

a-renaming

First semantic property of A-calculus:
a bound variable in a term tree (and all its references) can be
renamed without affecting the semantics of the term tree

« cannot rename free variables

Precise definition:
a-equivalence: Al 1. E < Al L. [1o/14]E (ifl 5, OFV(E)

[Eo/ 1] Eq: substitute all free occurrences of | in E; with E,

¢ (formalized soon)

Since names of bound variables “don’t matter”, it's convenient
to treat all a-equivalent term trees as a single term

« define all later semantics for terms
« can assume that all bound variables are distinct
« for any particular term tree, do a-renaming to make this so

Craig Chambers 170 CSE 505

Evaluation, B-reduction

Define how a A-calculus program “runs” via
a set of rewrite rules, a.k.a. reductions

* “E; - E,"” means “E; reduces to E, in one step”

Onerule: (Al .E))E, - [Ey/I]E;

« “applying a function to an argument expression
reduces to the function’s body after substituting the
argument expression for the function’s formal”

« this rule is called the B-reduction rule

Other rules state that the B-reduction rule can be applied to
nested subexpressions, too

« (formalized later)

Define how a A-calculus program “runs” to compute a final result
as the reflexive, transitive closure of one-step reduction

« “E -0 v means “E reduces to result value V"
« (formalized later)

That's it!

Craig Chambers 171 CSE 505

Examples

Craig Chambers 172 CSE 505

Substitution

Substitution is suprisingly tricky
* must avoid changing the meaning of any variable reference,
in either substitutee or substituted expressions

« “capture-avoiding substitution”

Define formally by cases, over the syntax of the substitutee:
« identifiers:
[E) 1]l =E
[Ex/ 1] =3 (fJ 21)
« applications:
[E/1]1(E; E3) = ([Ex/1]Ey) ([E/I]E)
« abstractions:
[Ex/IT(ANI.E) = Al.E
[Ex/1]1(N.E) N.[E/I]E
(ifJ 21 and J O FV(Ey))

» use a-renaming on (AJ. E) to ensure J O FV(Ey)

Defines the scoping rules of the A-calculus

Craig Chambers 173 CSE 505

Normal forms

E -U V: Eevaluates fully to a value V
- _Udefined as the reflexive, transitive closure of -

What is V?
an expression with no opportunities for 3-reduction

« such expressions are called normal forms

Can define formally:

\Y, i= ALV
| 1V
| 1

(l.e., any E except one containing (Al . E;) E; somewhere)

Q: does every A-calculus term have a normal form?
Q: is a term’s normal form unique?

Craig Chambers 174 CSE 505

Reduction order

Can have several places in an expression where
a lambda is applied to an argument
« each is called a redex
(AX. (AY.X) xX) ((Az.z) (Aw (Av.Vv) w))

Therefore, have a choice in what reduction to make next
Which one is the right one to choose to reduce next?
Does it matter?

« to the final result?

« to how long it takes to compute it?
« to whether the result is computed at all?

Craig Chambers 175 CSE 505

Some possible reduction strategies

Example:
(AX. (AY.x) X) ((Az.z) (Aw. (Av.v) w))

normal-order reduction:
always choose leftmost, outermost redex

« call-by-name, lazy evaluation:
same, and ignore redexes underneath A

applicative-order reduction:
always choose leftmost, outermost redex
whose argument is in normal form

« call-by-value, eager evaluation:
same, and ignore redexes underneath A

Again, does it matter?
« to the final result?
« to how long it takes to compute it?
« to whether the result is computed at all?

Amazing fact #1: Church-Rosser Thm., Part 1

0

Thm (Confluence). Ife; -Ye,ande; - es,

then Deyst.e, - ejande; -0 e,

€1

Y
LWl

Corollary (Normalization). Every term has a unique normal
form, if it exists

« No matter what reduction order is used!

Proof? [e.g. by contradiction]

Craig Chambers 176 CSE 505 Craig Chambers 177 CSE 505
Existence of normal form? Amazing fact #2: Church-Rosser Thm., Part 2
Does every term have a normal form? Thm. If a term has a normal form, then
« (If it does, we already know it's unique) normal-order reduction will find it!
« applicative-order reduction might not!
Consider:
(AX.x X) (Ax.x X) Example:
(M. (AY.Y)) ((Az.z z) (Az.z Z))
Same example, but using abbreviations:
id=(Ay.y)
loop = ((Az.z z) (Az.z Zz))
(Ax.id) |oop
(Abbreviations are not really in the A-calculus;
expand away textually before evaluating)
Q: How can | tell whether a term has a normal form?
Craig Chambers 178 CSE 505 Craig Chambers 179 CSE 505

Amazing fact #3: A-calculus is Turing-complete!

Can translate any Turing machine program into
an equivalent A-calculus program, and vice versa

But how?

A-calculus lacks:
« functions with multiple arguments
* numbers and arithmetic
* booleans and conditional branches
« data structures
« local variables
« recursive definitions and loops

All it's got are one-argument, non-recursive functions...

Multiple arguments, via currying

Encode multiple arguments by currying

MXY).E = MX (AY.E)
E(E.. BE)) = (EE) B

Multiple arguments can be had via a syntactic sugar,

so they're not essential,

and they can be dropped from the core language

Craig Chambers 180 CSE 505 Craig Chambers 181 CSE 505
Church numerals Arithmetic on Church numerals
Encode natural numbers using stylized A terms A basic arithmetic function: succ
e« succ N U N+1
zero = (As.Az. z) = (As. Az. s z)
one = (As.Az.s z) = (As.Az.s! z) Definition:
two = (As.Az.s (s z)) = (As.Az.s? z) succ = (An. As.Az.s (n s z))
N = (As.Az.sN z)
(N is the A-calculus encoding of the mathematical number N) Examples:
succ zero
= (M. As.Az.s (n s z)) (As’.Az’.2")
A unary representation of numbers, - (As.Az.s ((As’.Az'.2") s z))
but one that can be used to do computation S (As.Az.s ((Az'.2') 2))
+ a*“number” N is a function that applies - (As.Az.s z) = one
a “successor” function (s) N times to a “zero” value (z)
succ two
= (M. As.Az.s (n s z)) (As’.Az’.s’ (s' Z'))
- (As.Az.s ((As’.Az'.s’ (s’ z')) s z))
- (As.Az.s ((Az2'.s (s 2')) z))
- (As.Az.s (s (s z))) = three
Craig Chambers 183 CSE 505

Craig Chambers 182 CSE 505

Addition

Another basic arithmetic function: add
cadd X Y -9 X¥v

Algorithm: to add X to Y, apply succ to Y X times

Key trick: X is a function that applies its first argument to its
second argument X times

¢ “anumber is as a number does”

Definition:
add = (Ax.Ay.x succ y)

Example:

add two three = (Ax.Ay.x succ y) two three
~Jtwo succ three = (As.Az.s (s z)) succ three
~Ysucc (succ three)

SOfive

(pr ed is tricky, but doable; sub then is similar to add)

Craig Chambers 184 CSE 505

Multiplication

Another basic arithmetic function: mul
emul XY S0 Xy

Craig Chambers 185 CSE 505

Booleans and conditionals

How to make choices? We only have functions...

Key idea:
true and false are encoded as functions that work differently
« call the boolean value to control evaluation

true = (At.Ae.t)

false = (At.Ae.e)

if = (Ab.At.Ae.b t e)
Example:

if false loop three
= (Ab.At.Ae.b t e) false loop three
_Ufalse loop three = (At.Ae.e) loop three
~Ythree

Craig Chambers 186 CSE 505

Testing numbers

To complete Peano arithmetic, need an i sZer o predicate
«iszero N -9 N=0

Idea: implement by calling the number on a successor function
that always returns false and a zero value that is true

Definition:
isZero = (An.n (Ax.fal se) true)

Examples:

isZero zero = (An.n (Ax.false) true) zero
- (As’.Az’.z') (Ax.false) true
“Utrue

isZero two = (An.n (Ax.false) true) two
- (As’.Az’.s’ (s’ z')) (Mx.false) true
U (ax.false) ((Ax.false) true)
- false

Craig Chambers 187 CSE 505

Data structures

E.g., pairs

Idea: a pair is a function that remembers its two parts
(via lexical scoping & closures)
« pair function takes a selector function that's
passed both parts and then chooses one

pair = (M.As.Ab.b f s)
fst = (Ap.p (AM.As.f))
snd = (Ap.p (M .As.s))
Examples:

pair true four = (AMf.As.Ab.b f s) true four
-5 (Ab.b true four)

snd (pair true four) = (Ap.p (AMf.As.s)) (pt f)
- (pair true four) (Af.As.s)
U (Ab.b true four) (Af.As.s)
- (Af.As.s) true four
5 four

Craig Chambers 188 CSE 505

Local variables

Encode let using functions

|et|=E1inE2 = ()\|E2) El

Example:
let x = one in
let y =tw in
add x y
=

(AX. (Ay.add x y) two) one

Doesn’t handle recursive declarations, though:

let fact = ... fact ... in
fact two
=
(AMact.fact two) (... fact ...)
Craig Chambers 189 CSE 505

Loops and recursion

We've seen that we can write infinite loops in the A-calculus
loop = ((Az.z z) (Mz.z 2))

Can we write useful loops?

l.e., can we write recursive functions?

The | et encoding won't work, as we saw

How about this?
fact = (An.
if (isZero n) one
(mul n (fact (pred n))))

Craig Chambers 190 CSE 505

Amazing fact #4:
Can define recursive functions non-recursively!

Step 1: replace the bogus recursive reference with an explicit
argument

fact G = (Afact. An.
if (isZero n) one
(mul n (fact (pred n))))

Step 2: use the “paradoxical Y combinator” to pass f act Gto
itself in a funky way to yield plain f act

fact = (Y factQ

Now all we have to do is write Y in the raw A-calculus

Craig Chambers 191 CSE 505

The Y combinator

A definition of Y:
Y = (M. (M. f (x X)) (M. f (x x)))

Example:

Y G = (M. (M. f (x x)) (M .f (x x))) fG
- (MG (x x)) (M .fG (X X))
- fG (A .fG (X' X)) (A .fG (X x'))))
=fG (Y fQ

So: (Y fQ reduces to a call to f G whose argument is an
expression that, if evaluated inside f G will reinvoke f Gagain
with the same argument

« normal-order evaluation will only reduce “recursive”
argument (Y f G on demand, as needed

Craig Chambers 192 CSE 505

Example

A concrete example:

fact G = (Afact. An.
if (isZero n) one
(mul n (fact (pred n))))
fact = (Y factQ

(* YIG PiG (YO *)

fact two = Y factG two
OfactG (Y factG two
_Uif (iszero two) one
(mul two ((Y factG (pred two)))
Ol two ((Y factQ (pred two))
[doing some applicative-order reduction, for simplicity]
O nul two (factG (Y factQ one)

S0l two
(if (isZero one) one
(mul one ((Y factG (pred one))))

Ol two
(mul one ((Y factG (pred one)))

O nul two (mul one
(if (isZero zero) one (mul zero ...)))

9 ml two (nul one one) -5two

Craig Chambers 193 CSE 505

Letrec

Can now define a recursive version of | et :
letrec| =E;inE, = let |l =Y (Al.E) inE
» can now reference | recursively inside E;

Example:
letrec

fact = (An. if (isZero n) one
(mul n (fact (pred n))))

fact

Craig Chambers 194 CSE 505

Summary, so far

Saw untyped A-calculus

Saw a-renaming, 3-reduction rules
« both relied on capture-avoiding substitution
« a-renaming defined families of equivalent term trees
» name choice of formals doesn’t matter to semantics
« B-reduction defined “evaluation” of a A-calculus “program”

» normal forms: no more B-reduction possible
the “results” of a “program”

* reduction strategies such as normal-order & applicative-order
had different termination properties, but not different results

Church-Rosser: key confluence & normalization thms.

Turing-completeness of untyped A-calculus suggested by
successfully encoding many standard PL features

Craig Chambers 195 CSE 505

