Simply typed A-calculus

Add types and static typechecking to A-calculus
« “simply typed”: no polymorphic types

Syntax: add types to formals:
I:r. E

[Syntactic associativity rules:
arrow is right-associative: 7y - T, - I3 = Iy - (I - 13) |

Ois a base type, for values that will never be called

Craig Chambers 196 CSE 505

Typing environments and judgments

Typing environment I': a sequence of | : 7 pairs
« records the type of each bound identifier
e eg:x:fJy:0-0z:0
* empty sequence: [

Typing judgment of theform M FE: 7

« ‘“in typing environment I,
syntactically well-formed expression E is also
semantically well-formed, and has type 7’

¢ |- and: are just punctuation; could have been (I', E, 1)

A (correct) typing judgment:
x:dy:0-0z:0F(y z) : 0

An (incorrect) typing judgment:
x:Oy:0-0z:0rF(w (z y)) :0-0

Static semantics:
a set of rules that specify which typing judgments are correct

Craig Chambers 197 CSE 505

Inference rules

Can specify a set of legal judgments using a collection of logical
inference rules of the following form:

premise; . premise,

k=0
conclusion ()

« whenever all the premises are true, the conclusion is true

« arule with no premises is an axiom

« rules can have “side conditions” that constrain when they
apply

A=B A
Example rule; ———
B
Premises and conclusions can containing meta-variables
« instantiate meta-variables consistently within a rule

Constructive: something is in the set of facts being specified
only if it can be deduced from axioms by applying
instantiations of inference rules a finite number of times

« if something can’t be deduced, then it's not in the set

Craig Chambers 198 CSE 505

Static semantics inference rules

Specified in a syntax-directed way:
for each syntactic construct, give inference rule(s) for all
ways of that construct is well-formed

[var] if 1:tor
Mot
rl:t, FET
[- intro] ! 2 if 1:tar
FTEAN T Bty -1,
MFE;:1, -1 N-E,:t
[dim] 171 2 2771
F|—(E1E2):r2

A program E is semantically well-formed iff O |- E: 7is derivable
« statically illegal programs are specified by omission

That's it!

Craig Chambers 199 CSE 505

Typing derivations

To demonstrate (a.k.a. prove) that
an expression E has type rin typing environment I,
provide a typing derivation
« atree of instances of typing inference rules,
where the conclusion of one rule is a premise of the next,
whose leaves are axiom instances and whose final
conclusionisl FE: 7

Craig Chambers 200 CSE 505

Specification vs. algorithm

Static semantic rules are a specification: don’t say how to check
whether a program is correct, just say how to verify a
supposed proof that a program is

¢ oracles are OK!

Real type checkers require a type checking algorithm that will
compute whether a program is type-correct

¢ no oracles
« termination is good!

Can read many inference rules as if they were
cases in an algorithm

¢ I'and Ein conclusion as “inputs”

« recursively typecheck subexpressions,
augmenting I if needed, to compute their result types

« compute and return conclusion’s result type as “output”

rl:a FET,
[- intro] if 1:tar
FE(Al: Ty E):r1 - Ty

Craig Chambers 201 CSE 505

An alternative language

Syntax: same, but omit explicit type of formal argument

E =Al. E
| EE
| 1

T =0
| 7> 1

Typing rules: same, but infer type of A formal

[var] if 1:tar
Mot
rl:t, FET
[- intro] T2 if l:tar
@A By -1,
MFFE;T, -1 MFE:t
[~ dim] 11 2 2771

MH(E; BT,

A fine specification, but it's trickier to implement...
« [is it impossible to implement?]

[“Church-style” vs. “Curry-style”]

Craig Chambers 202 CSE 505

Specifying evaluation

Can specify evaluation rules precisely using inference rules, too

Judgments of the form E; - E,

» “expression E; reduces in one step to E,”

Can formalize different reduction semantics
E.g., full reduction:

[P] (M :T.E)E, - [E/I]E;
[A] MTE:—AEHE
) e

12 1 2
e

12 12

[How to specify normal order? call-by-name? call-by-value?]

[How to specify —57?]

Craig Chambers 203 CSE 505

