Simply typed λ-calculus

Add types and static typechecking to λ -calculus

• "simply typed": no polymorphic types

Syntax: add types to formals:

$$E \qquad \begin{array}{c} ::= \lambda I: \tau. \ E \\ \mid E E \\ \mid I \end{array}$$

$$\tau \qquad \begin{array}{c} ::= * \\ \mid \tau \rightarrow \tau \end{array}$$

[Syntactic associativity rules:

arrow is right-associative: $\tau_1 \rightarrow \tau_2 \rightarrow \tau_3 = \tau_1 \rightarrow (\ \tau_2 \rightarrow \tau_3)$]

* is a base type, for values that will never be called

Craig Chambers 196 CSE 50

Typing environments and judgments

Typing environment Γ : a sequence of $I: \tau$ pairs

- · records the type of each bound identifier
- e.g.: x:*,y:*→*,z:*
- empty sequence: Ø

Typing judgment of the form $\Gamma \vdash E : \tau$

- "in typing environment Γ, syntactically well-formed expression E is also semantically well-formed, and has type τ"
- \vdash and : are just punctuation; could have been (Γ, E, τ)

A (correct) typing judgment:

$$x:*,y:*\rightarrow*,z:* \vdash (y z):*$$

An (incorrect) typing judgment:

$$x:*,y:*\rightarrow*,z:*\vdash(w(zy)):*\rightarrow*$$

Static semantics:

a set of rules that specify which typing judgments are correct

Craig Chambers 197 CSE 505

Inference rules

Can specify a set of legal judgments using a collection of logical inference rules of the following form:

$$\frac{\text{premise}_1 \quad \dots \quad \text{premise}_k}{\text{conclusion}} \qquad (k \ge 0)$$

- whenever all the premises are true, the conclusion is true
- a rule with no premises is an axiom
- rules can have "side conditions" that constrain when they apply

Example rule: $\frac{A \Rightarrow B}{R}$

Craig Chambers

Premises and conclusions can containing meta-variables

• instantiate meta-variables consistently within a rule

Constructive: something is in the set of facts being specified only if it can be deduced from axioms by applying instantiations of inference rules a finite number of times

• if something can't be deduced, then it's not in the set

198

Static semantics inference rules

Specified in a syntax-directed way:

for each syntactic construct, give $inference\ rule(s)$ for all ways of that construct is well-formed

[var]
$$\frac{}{\Gamma \vdash \text{I}:\tau}$$
 if $\text{I}:\tau \in \Gamma$

$$[\rightarrow \mathsf{intro}] \qquad \frac{\Gamma,\, \mathtt{I} \colon \tau_1 \vdash \mathtt{E} \colon \tau_2}{\Gamma \vdash (\lambda\mathtt{I} \colon \tau_1 \cdot \mathtt{E}) \colon \tau_1 \to \tau_2} \qquad \text{if } \mathtt{I} \colon \tau \not \in \Gamma$$

$$[\rightarrow \text{elim}] \qquad \frac{\Gamma \vdash \texttt{E}_1 : \texttt{\tau}_1 \rightarrow \texttt{\tau}_2 \qquad \Gamma \vdash \texttt{E}_2 : \texttt{\tau}_1}{\Gamma \vdash (\texttt{E}_1 \ \texttt{E}_2) : \texttt{\tau}_2}$$

A program ${\it E}$ is semantically well-formed iff $\varnothing \vdash {\it E}$: τ is derivable

• statically illegal programs are specified by omission

That's it!

CSE 505

Craig Chambers 199 CSE 505

Typing derivations

To demonstrate (a.k.a. prove) that an expression E has type τ in typing environment Γ , provide a typing derivation

• a tree of instances of typing inference rules, where the conclusion of one rule is a premise of the next, whose leaves are axiom instances and whose final conclusion is $\Gamma \vdash E : \tau$

Craig Chambers CSE 505

Specification vs. algorithm

Static semantic rules are a *specification*: don't say how to check whether a program is correct, just say how to verify a supposed proof that a program is

· oracles are OK!

Real type checkers require a type checking algorithm that will compute whether a program is type-correct

- · no oracles
- termination is good!

Can read many inference rules as if they were cases in an algorithm

- Γ and E in conclusion as "inputs"
- · recursively typecheck subexpressions, augmenting $\boldsymbol{\Gamma}$ if needed, to compute their result types
- · compute and return conclusion's result type as "output"

$$[\to \text{intro}] \qquad \frac{\Gamma, \, \mathtt{I} \colon \tau_1 \vdash \mathtt{E} \colon \tau_2}{\Gamma \vdash (\lambda \mathtt{I} \colon \tau_1 \, . \, \mathtt{E}) \colon \tau_1 \to \tau_2} \qquad \text{if } \mathtt{I} \colon \tau \not \in \Gamma$$

Craig Chambers CSE 505

An alternative language

Syntax: same, but omit explicit type of formal argument

$$E \qquad \vdots = \lambda I. \quad E$$

$$\mid E \quad E$$

$$\mid I$$

$$\tau \qquad \vdots = *$$

$$\mid \tau \rightarrow \tau$$

 $[\rightarrow elim]$

Typing rules: same, but *infer* type of λ formal

$$\begin{split} & [\text{var}] & \frac{}{\Gamma \vdash 1:\tau} & \text{if } 1:\tau \in \Gamma \\ \\ & [\to \text{intro}] & \frac{\Gamma, 1:\tau_1 \vdash E:\tau_2}{\Gamma \vdash (\lambda 1 \cdot E):\tau_1 \to \tau_2} & \text{if } 1:\tau \not \in \Gamma \\ \\ & [\to \text{elim}] & \frac{\Gamma \vdash E_1:\tau_1 \to \tau_2}{\Gamma \vdash (E_1 \cdot E_2):\tau_2} \end{split}$$

A fine specification, but it's trickier to implement...

• [is it impossible to implement?]

["Church-style" vs. "Curry-style"]

Craig Chambers CSE 505

Specifying evaluation

Can specify evaluation rules precisely using inference rules, too

Judgments of the form $E_1 \rightarrow E_2$

"expression E₁ reduces in one step to E₂"

Can formalize different reduction semantics E.g., full reduction:

$$[\beta] \qquad \frac{}{(\lambda \mathtt{I} : \tau . \mathtt{E}_1) \mathtt{E}_2 \to [\, \mathtt{E}_2 / \mathtt{I} \,] \, \mathtt{E}_1}$$

$$[\lambda] \qquad \frac{E \to E'}{\lambda I : \tau . E \to \lambda I : \tau . E'}$$

$$[\mathsf{app}_1] \qquad \frac{\mathtt{E}_1 \to \mathtt{E}_1^{\ '}}{\mathtt{E}_1^{\ }\mathtt{E}_2^{\ } \to \mathtt{E}_1^{\ '} \, \mathtt{E}_2^{\ }}$$

$$[\mathsf{app}_2] \qquad \frac{\mathsf{E}_2 \to \mathsf{E}_2'}{\mathsf{E}_1 \; \mathsf{E}_2 \to \mathsf{E}_1 \; \mathsf{E}_2}$$

[How to specify normal order? call-by-name? call-by-value?] [How to specify \rightarrow^* ?]

Craig Chambers CSE 505 203