An alternative semantics

Judgments of the form E U Vv
« “expression E reduces fully to normal form V"
* big-step operational semantics

Can formalize different reduction semantics
E.g., call-by-value reduction:

[A]

AM:t.E)l(A:T.E)

Yet another alternative semantics

Use explicit environments, not substitution
« closer still to real interpreter

(CBV) environment p: a sequence of | =V pairs
« records the value of each bound identifier

(Big-step) judgments of the form p F EU v
« “in environment p,
expression E reduces fully to normal form Vv’

E, V(AT E) E, UV, [V,/ITEUV
[app]
(E,E) UV _
[var] —— if 1=VOp
pk1 Vv
Comparison with small-step: 0]
 specifies same result values pF(:T.E)U(Al:T.E)
« simpler, fewer tedious rules PHE, Ut E) PHE, U v,
« closely matches recursive interpreter implementation p.1=V,|-E U v,
« not as nice for proofs, since each step is “bigger” [app] if I Odom(p)
PH(E,E)lV
Craig Chambers 204 CSE 505 Craig Chambers 205 CSE 505
Closures A question

Values become pairs of lambdas and environments
V::=<MN:rE p>

Revised rules:

[var] if 1=vOp

pk1 dv

[A]
pFAI:T.E)U<Al: 1. E p>

pHE U<AI:T.Ep>
P 1=V,FELY,
[app] STE IV if 1 Odom(p’)
172

pPFE, UV,

Comparison with substitution-based semantics:
« specifies “equivalent” result values
» apply environment as substitution to lambda to get same result
» but multiple closures represent same substituted lambda
« very close match to interpreter implementation
« much more complicated = bad for proofs

Craig Chambers 206 CSE 505

What types should be given to the formals below?
(AX:?. X X)

loop = ((Az:?. z z) (Az:?. z z))

Y = (M:?2, (2. f (x x)) (Ax:?2. f (x x)))

Craig Chambers 207

CSE 505

Amazing fact #5:
All simply typed A-calculus programs terminate!

Cannot assign types to any program involving self-application
« would require infinite or circular or recursive types

But self-application was used for | oop, Y, etc.

< cannot write looping or recursive programs
in simply typed A-calculus, at least in this way

Thm (Strong normalization).
Every simply typed A-calculus term has a normal form.

« all type-correct programs are guaranteed to terminate!

Simply typed A-calculus is not Turing-complete!
« bad for expressiveness in a real PL

¢ good in restricted domains where we need termination
guarantees

» type checkers
* OS packet filters

Craig Chambers 208 CSE 505

Adding explicit recursive values

Make simply typed A-calculus more expressive by
adding a new primitive to define recursive values: f i x

Additional syntax:
E = ... | fix E

Additional typing rule:
NrNFET ST
FE(fix E):t

[fix]

Additional (small-step) reduction rule:

il X B-EdixD

Example of use:
nat = (0-0 -0-0
fact = fix (Afact:nat -nat.
An:nat. if (isZero n) one
(mul n (fact (pred n))))

Craig Chambers 209 CSE 505

Other extensions

Can design more realistic languages by extending A-calculus
Formalize semantics using typing rules and reduction rules

Examples:
 ints
* bools
o let
« records
« tagged unions
* recursive types, e.qg. lists
* mutable references

Craig Chambers 210 CSE 505

Ints

Additional syntax for types, expressions, and values:
T i= ... | int
E ::=...|0|...|E1+E2|
\% = ... | 0

Additional typing rules:

[numeral] e if kO Nat
I Fkiint
F|—E1:int F|—E2:int
[+]

r |—(E1+ E2):int

Additional (big-step) evaluation rules:

al -
[val viv

E,lV E, UV -
[+] 1 1 2 2 V= V1+V2
(E;+E))lv

Note: didn’t have to change any existing rules
to add these new features = they're orthogonal

Craig Chambers 211 CSE 505

Bools

Additional syntax for types, expressions, and values:
T ::= ... | bool

E = | true | false
| if E; then E, el se Ej
\% = | true | false

Additional typing rules:

[true] _ [false] B
I Ftrue:bool I ffal se:bool

I |- E,:bool rEyt M-Eyt
[if]

Fr-(@f E; then E, else E3)ZT

Additional (big-step) evaluation rules:

ElUtrue EZUV2

Let

Additional syntax for expressions:
E i= ... | let I =E inE

Additional typing rules:

Additional (big-step) evaluation rules:

[yl ,
(if E, then E, else Ej) UV,
E,Ufalse E;U v,
(il ;
(if E; then E, else E3) Vs
Craig Chambers 212 CSE 505 Craig Chambers 213 CSE 505
Records Tagged unions

Additional syntax for types, expressions, and values:

T o= {lgm s et
E ti= .. | {17E ... 1 B3 | #lE
\Y% L= oL |{|1:V1,...,|k:Vk}

Additional typing rules:

Additional (big-step) evaluation rules:

Craig Chambers 214 CSE 505

A tagged union type is a primitive version of an ML datatype:
a set of labeled alternative types

A value of a tagged union type is one of the labels
tagging a value of the corresponding alternative type

« in contrast to records whose values have all of the labeled
element types

Example:
let u=(if ... then <A=5> else <B=true>) in
(* u has type <Arint, B:bool> *)
case u of <A=i> => printlnt i
| <B=b> => printBool b

Craig Chambers 215 CSE 505

Formalizing tagged unions

Additional syntax for types, expressions, and values:
T =] <lgn, oo e ge
E =L | <I=BE>
case E of <l=l{> => E;
| ...
| <| k:I k, > => Ek

\Y | <I=V>

Additional typing rules:

Additional (big-step) evaluation rules:

Craig Chambers 216 CSE 505

Lists

Can use records and tagged unions to define lots of data
structures, e.g. (non-polymorphic) lists

int_list = <N|:{},
Cons:{hd:int, tl:int_list}>

a_list = <Cons={hd=1,
t | =<Cons={ hd=2,
tI=<N1={}>} >} >

But something here is bogus!

Craig Chambers 217 CSE 505

Recursive types

Previously added support for recursive values (e.g. functions):
fix E

Now add support for recursive types: ul . 7
« the same as 7, except thatinside 7, occurrences of | mean r

Can correct the definition of i nt _| i st type:
int_list = pT. <Nil:{},
Cons:{hd:int, tl:T}>

Meaning of recursive type:
infinite expansion of all recursive references

« but written down in a finite way

An infinitely big type can have finite-sized values
because union includes non-recursive base case

Craig Chambers 218 CSE 505

A problem

There are many finite ways to write down an infinite type:
int_list0O = pT. <Nil:{},

Cons:{hd:int, tl:T}>
int_listl =<Nl:{},
Cons:{hd:int, tl:int_list0}>
<Ni I':{},
Cons:{hd:int, tl:int_listl}>

int_list2

All have the same infinite expansion, so they're all the same
But how’s the typechecker to implement type equality checking?

One solution: require explicit operations to convert between
different forms, then just use syntactic equality testing
e unfold:pul.7 - [ul.7/l]r
e unfold: int_list0 - int_listl
o fold:[ul.7/1]7r - pl. 1
o fold: int_listl - int_listO

ML datatypes wire together a combination of recursive types,
fold and unfold operations, and tagged unions in a single
mechanism

Craig Chambers 219 CSE 505

References and mutable state

Additional syntax for types, expressions, and values:

Example

let r =ref 1 in

r i= .| rref let x = (r :=2) in
E = ... | ref E] 'V E| B =B I
\% i= o0 | ref V
Additional typing rules:
Additional (big-step) evaluation rules:
Craig Chambers 220 CSE 505 Craig Chambers 221 CSE 505
Stores and locations Revised formalization
Add an evaluation context to store contents of mutable memory Additional syntax for types, expressions, and values:
T = ... | rref
Location I: a location in mutable memory E = ... | ref E] ! E|] B =B
« fresh location allocated by r ef E expression \Y T
* locations are values, notref V
(Typing rules unchanged)
Store o: a sequence of I=V pairs
« represents the contents of each memory location Revised (big-step) evaluation rules:
« initialized by r ef oFEJV, @ .
4 [ref] b if 1 0 dom(o")
« accessed by ! ot (ref E)UV,o[l=V]
« updated by : = ,
otEVL G .
" _OoFE%Lo if I=vO o
. . . ot B)lv,c
Evaluation of a subexpression now takes an input store
and yields a result store to use in later evaluation: - oFE Ul o o'FE,lV,0"
E V 1 =
o-ElV.0 _ ok (Ey =E) UV, a"[1=V]
« thread the updated stores through evaluation of all
subexpressions
« evaluation order now becomes explicit Plus have to revise all earlier rules with threaded stores!
Different than environment, which changes when entering
nested scopes and is restored when exiting, and which is
captured by functions and is restored when they're called
Craig Chambers 222 CSE 505 Craig Chambers 223 CSE 505

Example again
let r =ref 1in

let x = (r :=2) in
Ir

Craig Chambers 224 CSE 505

