An alternative semantics

Judgments of the form $E \downarrow V$

- "expression E reduces fully to normal form V"
- · big-step operational semantics

Can formalize different reduction semantics E.g., call-by-value reduction:

$$\begin{array}{c} [\lambda] & \overline{(\lambda \texttt{I} \colon \tau \,.\, \texttt{E}) \, \psi \, (\lambda \texttt{I} \colon \tau \,.\, \texttt{E})} \\ \\ [\mathsf{app}] & \overline{ \begin{array}{c} \texttt{E}_1 \, \psi \, (\lambda \texttt{I} \colon \tau \,.\, \texttt{E}) & \texttt{E}_2 \, \psi \, \texttt{V}_2 & \texttt{[V}_2 / \texttt{I]E} \, \psi \, \texttt{V} \\ \hline \\ & (\texttt{E}_1 \, \texttt{E}_2) \, \psi \, \texttt{V} \end{array} }$$

Comparison with small-step:

- · specifies same result values
- simpler, fewer tedious rules
- · closely matches recursive interpreter implementation
- not as nice for proofs, since each step is "bigger"

Craig Chambers 204 CSE 50

Yet another alternative semantics

Use explicit environments, not substitution

· closer still to real interpreter

(CBV) environment ρ : a sequence of I=V pairs

· records the value of each bound identifier

(Big-step) judgments of the form $\rho \vdash E \ \lor \ V$

• "in environment ρ , expression ${\it E}$ reduces fully to normal form ${\it V}$ "

Craig Chambers 205 CSE 505

Closures

Values become pairs of lambdas and environments

$$V ::= \langle \lambda I : \tau.E, \rho \rangle$$

Revised rules:

Comparison with substitution-based semantics:

- specifies "equivalent" result values
 - apply environment as substitution to lambda to get same result
 - · but multiple closures represent same substituted lambda
- · very close match to interpreter implementation
- much more complicated ⇒ bad for proofs

A question

What types should be given to the formals below?

$$(\lambda x:?. x x)$$

$$loop = ((\lambda z:?. z z) (\lambda z:?. z z))$$

$$Y = (\lambda f:?. (\lambda x:?. f (x x)) (\lambda x:?. f (x x)))$$

Craig Chambers 206 CSE 505

Craig Chambers 207 CSE 505

Amazing fact #5: All simply typed λ -calculus programs terminate!

Cannot assign types to any program involving self-application

· would require infinite or circular or recursive types

But self-application was used for 100p, Y, etc.

 cannot write looping or recursive programs in simply typed λ-calculus, at least in this way

Thm (Strong normalization).

Every simply typed λ -calculus term has a normal form.

• all type-correct programs are guaranteed to terminate!

Simply typed λ-calculus is *not* Turing-complete!

- bad for expressiveness in a real PL
- good in restricted domains where we need termination guarantees
 - · type checkers
 - · OS packet filters
 - ...

Craig Chambers 208 CSE 50.

Adding explicit recursive values

Make simply typed λ -calculus more expressive by adding a new primitive to define recursive values: fix

Additional syntax:

$$E$$
 ::= ... | fix E

Additional typing rule:

[fix]
$$\frac{\Gamma \vdash E:\tau \to \tau}{\Gamma \vdash (\text{fix } E):\tau}$$

Additional (small-step) reduction rule:

[fix]
$$\frac{}{(\text{fix E}) \to \text{E (fix E)}}$$

Example of use:

Craig Chambers 209 CSE 505

Other extensions

Can design more realistic languages by extending λ -calculus Formalize semantics using typing rules and reduction rules

Examples:

- ints
- bools
- let
- · records
- · tagged unions
- · recursive types, e.g. lists
- mutable references

Ints

Additional syntax for types, expressions, and values:

$$au$$
 ::= ... | int E ::= ... | 0 | ... | E_1 + E_2 | ... V ::= ... | 0 | ...

Additional typing rules:

[numeral]
$$\frac{}{\Gamma \vdash k : \text{int}}$$
 if $k \in \text{Nat}$

$$[+] \qquad \frac{\Gamma \vdash \mathbb{E}_1 \text{:int} \qquad \Gamma \vdash \mathbb{E}_2 \text{:int}}{\Gamma \vdash (\mathbb{E}_1 + \mathbb{E}_2) \text{:int}}$$

Additional (big-step) evaluation rules:

$$[val] \qquad \frac{}{v \Downarrow v}$$

$$[+] \qquad \frac{E_1 \Downarrow v_1 \qquad E_2 \Downarrow v_2}{(E_1 + E_2) \Downarrow v} \qquad v = v_1 + v_2$$

Note: didn't have to change any existing rules to add these new features ⇒ they're orthogonal

Craig Chambers 211 CSE 505

Craig Chambers 210 CSE 505

Bools

Additional syntax for types, expressions, and values:

Additional typing rules:

Additional (big-step) evaluation rules:

Craig Chambers 212 CSE 50.

Let

Additional syntax for expressions:

$$E$$
 ::= ... | let $I = E_1$ in E_2

Additional typing rules:

Additional (big-step) evaluation rules:

Craig Chambers 213 CSE 505

Records

Additional syntax for types, expressions, and values:

Additional typing rules:

Additional (big-step) evaluation rules:

Tagged unions

A tagged union type is a primitive version of an ML datatype: a set of labeled alternative types

A value of a tagged union type is *one* of the labels tagging a value of the corresponding alternative type

• in contrast to records whose values have *all* of the labeled element types

Example:

Craig Chambers 214 CSE 505

Craig Chambers 215 CSE 505

Formalizing tagged unions

Additional syntax for types, expressions, and values:

Additional typing rules:

Additional (big-step) evaluation rules:

Craig Chambers 216

Lists

Can use records and tagged unions to define lots of data structures, e.g. (non-polymorphic) lists

But something here is bogus!

Craig Chambers 217 CSE 505

Recursive types

Previously added support for recursive values (e.g. functions): fix E

Now add support for recursive types: $\mu \mathcal{I}$. τ

• the same as τ , except that inside τ , occurrences of ${\it I}$ mean τ

Can correct the definition of int_list type:

```
\label{eq:matching_problem} \begin{split} \text{int\_list} &\equiv \, \mu \text{T. } < \text{Nil:} \{ \} \,, \\ &\quad \quad \text{Cons:} \{ \text{hd:int, tl:T} \} > \end{split}
```

Meaning of recursive type:

infinite expansion of all recursive references

· but written down in a finite way

An infinitely big type can have finite-sized values because union includes non-recursive base case

A problem

CSE 505

There are many finite ways to write down an infinite type:

All have the same infinite expansion, so they're all the same

But how's the typechecker to implement type equality checking?

One solution: require explicit operations to convert between different forms, then just use syntactic equality testing

```
    unfold: µI. τ → [µI.τ/I]τ
    unfold: int_list0 → int_list1
    fold: [µI.τ/I]τ → µI.τ
    fold: int_list1 → int_list0
```

ML datatypes wire together a combination of recursive types, fold and unfold operations, and tagged unions in a single mechanism

Craig Chambers 219 CSE 505

Craig Chambers 218 CSE 505

References and mutable state

Additional syntax for types, expressions, and values:

Additional typing rules:

Additional (big-step) evaluation rules:

Craig Chambers 220 CSE

Example

Craig Chambers 221

CSE 505

Stores and locations

Add an evaluation context to store contents of mutable memory

Location *l*: a location in mutable memory

- fresh location allocated by ref E expression
- locations are values, not ref V

Store σ : a sequence of l=V pairs

- represents the contents of each memory location
- initialized by ref
- · accessed by !
- updated by :=

subexpressions

- thread the updated stores through evaluation of all
 - evaluation order now becomes explicit

Different than environment, which changes when entering nested scopes and is *restored* when exiting, and which is captured by functions and is restored when they're called

Craig Chambers 222 CSE 505

Revised formalization

Additional syntax for types, expressions, and values:

(Typing rules unchanged)

Revised (big-step) evaluation rules:

$$[\text{ref}] \qquad \frac{\sigma \vdash \text{E} \ \forall \ \text{V}, \ \sigma'}{\sigma \vdash (\text{ref} \ \text{E}) \ \forall \ \text{V}, \ \sigma[\mathit{l}=\text{V}]} \qquad \text{if} \ \mathit{l} \not\in \text{dom}(\sigma')$$

$$[!] \qquad \frac{\sigma \vdash \mathsf{E} \ \forall \ l, \, \sigma'}{\sigma \vdash (! \ \mathsf{E}) \ \forall \ \mathsf{V}, \, \sigma'} \qquad \text{if } \mathit{l} = \mathsf{V} \in \sigma'$$

$$[:=] \qquad \frac{\sigma \vdash \mathbb{E}_1 \Downarrow l, \sigma' \qquad \sigma' \vdash \mathbb{E}_2 \Downarrow \mathbb{V}, \sigma''}{\sigma \vdash (\mathbb{E}_1 := \mathbb{E}_2) \Downarrow \mathbb{V}, \sigma''[l = \mathbb{V}]}$$

Plus have to revise all earlier rules with threaded stores!

Craig Chambers 223 CSE 505

Example again

```
let r = ref 1 in
let x = (r := 2) in
! r
```

Craig Chambers 224 CSE 505