Polymorphic types

 Simply typed A-calculus is “monomorphic”,
i.e. a type has no “flexible” pieces
TIEF |t

» "Good" programming languages have
polymorphic types

» So we'd like to capture the essense of
polymorphic types in our calculus

Polymorphic A-calculus (System F)

» Extends simply-typed A:

—type syntax
— expression/value syntax

— typechecking rules
— evaluation rules

Polymorphic type syntax

» Extend type syntax with a forall type
to= .| Vit

» Can write types of polymorphic values:
id  VT.T-T
map :VT.VU. (T — U)-T list—U list
nil CVT.T it

Polymorphic(ally typed) value syntax

» Syntax:
E:= ... |ALE]|E[1]
V:i=...|ALE

— AlLLE is a function that, given a type t, gives
back E with 1 substituted for |

— Use such values by instantiating them: E[1]
« E[1] is like function application

An example

(* fun id x = x
id:’a -> ‘a *)
id = AT. AX:T. X
CVT. T-T

id [int] 3 —g
(Axint. x) 3 —p
3

id [bool] —g
Ax:bool. x

Another example

(* fun applyTwice £ x = £ (£ x)
applyTwice: ('a->'a) -> 'a -> 'a *)
applyTwice =
AT. AET—-T. AX:T. f (f X)
VT, (T-T)>T->T

applyTwice [int] succ 3 —,
(Af:int—int. Axcint. f (f X?) succ 3 —y
succ (succ 3) —’
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Yet another example

map = AT. AU. fix (Amap:(T—>U)->T list>U list.
AR T—U. Mst:T list.

fold (case (unfold Ist) of
<nil=n> => <nil=()>
<cons=r> => <cons=t{hd=f (#hd r), ti=map f (#l r)}>))

VT, VU, (ToU)ST list—>U list
map [int] [bool] isZero [3,0,5] —;" [false,true,false]

¢ ML infers what the Al and [1] should be

A final example

(* fun cool £ = (f 3, £ true) *)
cool = AMf(VT.T-T). (f[int] 3, f [bool] true)
{(VT.T—=T)—(int * bool)

cool id —,
(id [int] 3, id [bool] true) —y”
((Axint. x) 3, (Ax:bool. X) true) —;"
(3, true)

* Note: V inside of A and —
— Can't write this in ML; not "prenex" form

— Type inference undecidable for full System F (and many
interesting subsets); but decidable for ML-style polymorphism

Evaluation and typing rules

¢ Evaluation:
EUALE) (1=t UV

[E-INST]
E[ UV

e Typing:
T, 1:TypeFE:1
— [T-POLY]
'k (ALE): Vit

THFEVILT
- [TINST]
T+ (E[1]) : [I>1]7

Various kinds of functions

* AlLE is a function from values to values
¢ Al.E is a function from types to values
¢ What about functions from types to types?
— Type constructors like —, list, BTree
* We want them!
* What about functions from values to types?

— Dependent type constructors like a way to build the
type “arrays of length n”, where n is a run-time
computed value

 Pretty fancy, but would be cool

Type constructors

¢ What's the "type" of list?

— Not a simple type, but a function from types to types
« e.g. list(int) = int_list

— There are lots of type constructors that take a single

type and return a type

« They all have the same "meta-type"

— Other things take two types and return a type:
* e.g. -, assoc_list

¢ A "meta-type" is called a kind

Kinds

» Atype describes a set of values or value constructors
(a.k.a. functions) with a common structure
TeEint| - ..
« Akind describes a set of types or type constructors with
a common structure
Ki=* K =K,
As in the s.t. A calculus, * is the “base kind”
« Write 11k to say that a type 1 has kind «
int:*
int—int i *
list o * = *
listint :: *
assoc_list::* = * = *
assoc_list string int :: *




Kinded polymorphic A-calculus
(System F,)

¢ Full syntax:

KIiZ* K=K
Ti=int |t - o | Vx| Al kT |6 T,
E:=M1T. E|l|E E | Al x.E|E[1]
V = ALE|Al:kE

— Functions and applications at both the value

and the type level
— Arrows at both the type and kind level

Examples

pair =
A To* AU {first.T, second:U}
R
pair int bool "—," {firstiint, second:bool}

{first=5, second=true} : pair int bool

swap =
AP:type = type = type. AT:*. AU,
Ap:P T U . {first=#second p, second=#first p}
VP = F o R Y TR Y UL
PTU—PUT

swap [pair] [int] [bool] ...

Expression typing rules

T T, It +-E",
- [T-ABY
TF@Alt.BE) ity —1,
T lix -Et
- [T-POLY]
' (AlikE) : Viikt

't E:Viikt Th1ix

[T-INST]
T+ (E1]) : [I>1]t

(T-VAR and T-APP unchanged)

Type kinding rules

TEr oo TEr,u*

[K-INT] [K-ARROW]
THint:* TE (>t

) N B0 e lxel
—  [K-FORALL] ——[K-VAR]
R A B I Tl

| I i o 3 Y Tt ok—-K T'Enik
[K-ABS] [K-APP|
TEM KL T) K = K, TE (1) 15

Higher-order kinds?

 Could “lift” polymorphism to type level...
ko= |Vik]|I
RN A 4 N A B |

 Could “lift” meta-kinding to kind level...
M:i=*M=M
Ki= LA M) g

« ...and so on to arbitrary “tower” of meta-
levels of language

Phase distinction

e Could also collapse all levels of language down
to one:

E:=1|AMEE|E, E,

¢ Loses phase distinction between run-time and
typecheck-time
— Fundamental to achieving benefits of type systems

— (More generally, might be desirable to have many
phases: compile, link, initialize, run, etc.; could use
meta-levels in language to encode these phase
distinctions.)




Summary

e Saw ever more powerful static type systems for

the A-calculus

— Simply typed A-calculus

— Polymorphic A-calculus, a.k.a. System F

— Kinded poly. A-calculus, a.k.a. System F,
* Exponential ramp-up in power, once build up

sufficient critical mass
¢ Real languages typically offer some of this

power, but in restricted ways

— Could benefit from more expressive approaches

Other uses

» Compiler internal representations for
advanced languages
—E.g. FLINT: compiles ML, Java, ...

» Checkers for interesting non-type
properties, e.g.:
— proper initialization
— static null pointer dereference checking
— safe explicit memory management
—thread safety, data-race freedom




