Polymorphic types

- Simply typed λ -calculus is "monomorphic", i.e. a type has no "flexible" pieces $\tau ::= {}^* \mid \tau \to \tau$
- "Good" programming languages have polymorphic types
- So we'd like to capture the essense of polymorphic types in our calculus

Polymorphic λ -calculus (System F)

- Extends simply-typed λ:
 - type syntax
 - expression/value syntax
 - typechecking rules
 - evaluation rules

Polymorphic type syntax

• Extend type syntax with a forall type

$$\tau ::= ... \mid \forall I.\tau \mid I$$

• Can write types of polymorphic values:

 $\begin{array}{ll} \text{id} & : \forall T. \ T {\rightarrow} T \\ \text{map} & : \forall T. \ \forall U. \ (T {\rightarrow} U) {\rightarrow} T \ \text{list} {\rightarrow} U \ \text{list} \\ \text{nil} & : \forall T. \ T \ \text{list} \\ \end{array}$

Polymorphic(ally typed) value syntax

• Syntax:

$$\begin{split} E ::= \dots \mid \Lambda I.E \mid E[\tau] \\ V ::= \dots \mid \Lambda I.E \end{split}$$

- $\Lambda I.E$ is a function that, given a type $\tau,$ gives back E with τ substituted for I
- Use such values by instantiating them: $E[\tau]$ $E[\tau]$ is like function application

An example

```
(* fun id x = x
id:'a \rightarrow a *)

id = AT. \lambda x:T. x
: \forall T. T \rightarrow T

id [int] 3 \rightarrow_{\beta}
(\lambda x:int. x) 3 \rightarrow_{\beta}

id [bool] \rightarrow_{\beta}
\lambda x:bool. x
```

Another example

```
(* fun applyTwice f x = f (f x) applyTwice: ('a->'a) -> 'a -> 'a *) applyTwice =  \Lambda T. \lambda f: T \to T. \lambda x: T. f (f x) : \forall T. (T \to T) \to T \to T  applyTwice [int] succ 3 \to_{\beta} (\lambda: fint)-int. \lambda x: int. f (f x)) succ 3 \to_{\beta} succ (succ 3) \to_{\beta} 5
```

Yet another example

```
\begin{split} \text{map} &= \Lambda T. \ \Lambda U. \ \text{fix} \ (\lambda \text{map:} (T \rightarrow U) \rightarrow T \ \text{list} \rightarrow U \ \text{list}. \\ \lambda f: T \rightarrow U. \ \lambda \text{lst:} T \ \text{list}. \\ \text{fold (case (unfold lst) of } \\ &< \text{nil=n} > < \text{nil=()} > \\ &< \text{cons=r} > < \text{cons=(hd=f (\#hd r), tl=map f (\#l r))>))} \\ &: \ \forall T. \ \forall U. \ (T \rightarrow U) \rightarrow T \ \text{list} \rightarrow U \ \text{list} \end{split}
```

map [int] [bool] isZero [3,0,5] \rightarrow_{β}^{*} [false,true,false]

• ML infers what the ΛI and $[\tau]$ should be

A final example

```
 \begin{array}{ll} (* \ fun \ cool \ f = (f \ 3, \ f \ true) \ *) \\ cool \ \equiv \ \lambda f : (\forall T.T \rightarrow T). \ (f \ [int] \ 3, \ f \ [bool] \ true) \\ : (\forall T.T \rightarrow T) \rightarrow (int \ ^* \ bool) \\ \\ cool \ id \ \rightarrow_{\beta} \\ (id \ [int] \ 3, \ id \ [bool] \ true) \ \rightarrow_{\beta} \\ ((\lambda x int. \ x) \ 3, \ (\lambda x : bool. \ x) \ true) \ \rightarrow_{\beta} \\ (3, \ true) \end{array}
```

- Note: \forall inside of λ and \rightarrow
 - Can't write this in ML; not "prenex" form
 - Type inference undecidable for full System F (and many interesting subsets); but decidable for ML-style polymorphism

Evaluation and typing rules

• Evaluation:

$$\frac{E \Downarrow (AI. E_1) \quad ([I \rightarrow \tau]E_1) \Downarrow V}{(E[\tau]) \Downarrow V}$$
 [E-INST]

• Typing:

$$\begin{array}{c} \Gamma, I:: Type \vdash E : \tau \\ \hline \Gamma \vdash (ALE) : \forall I.\tau \\ \hline \Gamma \vdash E: \forall I.\tau' \\ \hline \Gamma \vdash (E[\tau]) : [I \rightarrow \tau]\tau' \end{array}$$
 [T-INST]

Various kinds of functions

- λI.E is a function from values to values
- AI.E is a function from types to values
- What about functions from types to types?
 - Type constructors like \rightarrow , list, BTree
 - We want them!
- What about functions from values to types?
 - Dependent type constructors like a way to build the type "arrays of length n", where n is a run-time computed value
 - Pretty fancy, but would be cool

Type constructors

- What's the "type" of list?
 - Not a simple type, but a function from types to types
 - e.g. list(int) = int_list
 - There are lots of type constructors that take a single type and return a type
 - They all have the same "meta-type"
 - Other things take two types and return a type:
 - e.g. \rightarrow , assoc_list
- A "meta-type" is called a kind

Kinds

- A type describes a set of values or value constructors (a.k.a. functions) with a common structure $\tau := \inf \mid \tau_1 \to \tau_2 \mid ...$
- A kind describes a set of types or type constructors with a common structure

 $\kappa ::= {}^\star \mid \kappa_1 \Rightarrow \kappa_2$ As in the s.t. λ calculus, * is the "base kind"

• Write τ :: κ to say that a type τ has kind κ int :: *

int :: *
int→int :: *
list :: * ⇒ *
list int :: *
assoc_list :: * ⇒ * ⇒ *
assoc_list string int :: *

Kinded polymorphic λ -calculus (**System F**_m)

• Full syntax:

```
\begin{split} &\kappa ::= * \mid \kappa_1 \Rightarrow \kappa_2 \\ &\tau ::= \operatorname{int} \mid \tau_1 \to \tau_2 \mid \forall I :: \kappa.\tau \mid I \mid \lambda_\tau I :: \kappa.\tau \mid \tau_1 \mid \tau_2 \\ &E ::= \lambda I :\tau. \mid E \mid I \mid E_1 \mid E_2 \mid \lambda I :: \kappa.E \mid E[\tau] \\ &V ::= \lambda I.E \mid \lambda I :: \kappa.E \end{split}
```

- Functions and applications at both the value and the type level
- Arrows at both the type and kind level

Examples

```
\begin{array}{l} \text{pair} = \\ \lambda_{\tau}\text{Ti.*}. \lambda_{\tau}\text{Ui.*}. \text{ first:T, second:U} \\ \text{:: }^* \Rightarrow ^* \Rightarrow \\ \text{pair int bool "} \rightarrow_{\beta} \text{ first:int, second:bool} \\ \text{{first=5, second=true}: pair int bool} \\ \text{swap} = \\ \Lambda \text{P::type} \Rightarrow \text{type} \Rightarrow \text{type}. \Lambda \text{Ti.*}. \Lambda \text{U::*}. \\ \lambda \text{p:PTU. (first=\#second p, second=\#first p)} \\ \text{: } \forall \text{P::*}^* \Rightarrow ^* \Rightarrow ^*. \forall \text{Ti.*}^* \lor \text{U::*}. \\ \text{PTU} \rightarrow \text{PUT} \\ \text{swap [pair] [int] [bool] ...} \\ \end{array}
```

Expression typing rules

$$\begin{split} & \frac{\Gamma \vdash \tau_i ::^* \qquad \Gamma, I : \tau_i \vdash E : \tau_2}{\Gamma \vdash (\lambda I : \tau_i \vdash E : \tau_1 \rightarrow \tau_2} \text{ [T-ABS]} \\ & \frac{\Gamma, I :: \kappa \vdash E : \tau}{\Gamma \vdash (\Lambda I :: \kappa . E) : \forall I :: \kappa . \tau} \text{ [T-POLY]} \\ & \frac{\Gamma \vdash E : \forall I :: \kappa . \tau' \qquad \Gamma \vdash \tau :: \kappa}{\Gamma \vdash (E[\tau]) : [I \rightarrow \tau] \tau'} \text{ [T-INST]} \\ & \frac{\Gamma \vdash E : \forall I :: \kappa . \tau' \qquad \Gamma \vdash \tau :: \kappa}{\Gamma \vdash (E[\tau]) : [I \rightarrow \tau] \tau'} \end{split}$$

Type kinding rules

$$\begin{split} &\frac{}{\Gamma\vdash \text{int} ::^*} [\text{K-INT}] \quad \frac{}{\Gamma\vdash \tau_1 ::^*} \quad \frac{}{\Gamma\vdash \tau_2 ::^*} [\text{K-ARROW}] \\ \\ &\frac{}{\Gamma\vdash \text{Int} ::^*} [\text{K-FORALL}] \quad \frac{}{}\frac{I::\kappa \in \Gamma}{}{\Gamma\vdash I::\kappa} [\text{K-VAR}] \\ \\ &\frac{}{\Gamma\vdash (\forall I::\kappa,\tau) ::^*} [\text{K-FORALL}] \quad \frac{}{}\frac{}{\Gamma\vdash \tau_1 ::\kappa_2 \to \kappa_1 \quad \Gamma\vdash \tau_2 ::\kappa_2} \\ \\ &\frac{}{\Gamma\vdash (\lambda_\tau I::\kappa_1,\tau) ::\kappa_1 \to \kappa_2} [\text{K-ABS}] \quad \frac{}{}\frac{}{}\Gamma\vdash (\tau_1 ::\kappa_2 \to \kappa_1 \quad \Gamma\vdash \tau_2 ::\kappa_2} [\text{K-APP}] \\ \end{split}$$

Higher-order kinds?

• Could "lift" polymorphism to type level...

$$\begin{split} \kappa ::= \dots \mid \forall \; I.\kappa \mid I \\ \tau ::= \dots \mid \Lambda_{\tau} \; I::\kappa \,. \; \tau \mid \kappa[\tau] \end{split}$$

• Could "lift" meta-kinding to kind level...

$$M := * | M \Rightarrow M$$

 $\kappa ::= \dots \mid \lambda_{\kappa} \text{ I::M.} \kappa \mid \kappa_1 \kappa_2$

• ...and so on to arbitrary "tower" of metalevels of language

Phase distinction

 Could also collapse all levels of language down to one:

 $E ::= I | \lambda I : E . E | E_1 E_2$

- Loses phase distinction between run-time and typecheck-time
 - Fundamental to achieving benefits of type systems
 - (More generally, might be desirable to have many phases: compile, link, initialize, run, etc.; could use meta-levels in language to encode these phase distinctions.)

Summary

- Saw ever more powerful static type systems for the $\lambda\text{-calculus}$
 - Simply typed λ -calculus
 - Polymorphic λ -calculus, a.k.a. System F
 - Kinded poly. λ -calculus, a.k.a. System F_{ω}
- Exponential ramp-up in power, once build up sufficient critical mass
- Real languages typically offer some of this power, but in restricted ways
 - Could benefit from more expressive approaches

Other uses

- Compiler internal representations for advanced languages
 - E.g. FLINT: compiles ML, Java, ...
- Checkers for interesting non-type properties, e.g.:
 - proper initialization
 - static null pointer dereference checking
 - safe explicit memory management
 - thread safety, data-race freedom