
'

&

$

%

CSE 505: Concepts of Programming Languages

Dan Grossman

Fall 2006

Lecture 12

Universally Quantified Types (Parametric Polymorphism)

Dan Grossman CSE505 Fall 2006, Lecture 12 1

'

&

$

%

Where are we

• Lambda-calculus let us model functions and scope

• Types let us avoid getting stuck without encoding ints, records,

etc.

• Needed fix just to be Turing-Complete, still had to duplicate a lot

of code

• Subtyping allowed some code reuse

– primitive notions (e.g., wider records)

– lifted to other types (e.g., functions, deeper records)

• Today: Types of the form ∀α.τ

– uses, theory, connection to ML

• Next Time: Recursive data structures (beyond λ and fix)

Dan Grossman CSE505 Fall 2006, Lecture 12 2

'

&

$

%

The Goal

Understand what this interface means and why it matters:

type ’a mylist;

val mt_list : ’a mylist

val cons : ’a -> ’a mylist -> ’a mylist

val decons : ’a mylist -> ((’a * ’a mylist) option)

val length : ’a mylist -> int

val map : (’a -> ’b) -> ’a mylist -> ’b mylist

From two perspectives:

1. Library: Implement code to this specification

2. Client: Use code written to this specification

Dan Grossman CSE505 Fall 2006, Lecture 12 3

'

&

$

%

What The Client Likes
1. Library is reusable. Can make:

• Different lists with elements of different types

• New reusable functions outside of library (e.g.,

val twocons : ’a -> ’a -> ’a mylist -> ’a mylist

2. Easier, faster, more reliable than subtyping (cf. Java 1.4 Vector)

• No downcast to write, run, maybe-fail

3. Library must “behave the same” for all “type instantiations”!!

• ’a and ’b held abstract from library functions

• E.g., with built-in lists: If foo has type ’a list -> int, foo

[1;2;3] and foo [(5,4);(7,2);(9,2)] are totally

equivalent! (Never true with downcasts)

• In theory, means less (re)-integration testing

• Proof is beyond this course, but not much.

Dan Grossman CSE505 Fall 2006, Lecture 12 4

'

&

$

%

What the Library Likes

1. Reusability. For same reasons client likes it.

2. Abstraction of mylist from clients.

• Clients must “behave the same” for all equivalent

implementations, even if “hidden definition” of ’a mylist

changes.

• Clients typechecked knowing only there exists a type

constructor mylist

• Unlike Java, C++, (pure) Scheme, no way to downcast a t

mylist to, e.g., a pair.

Dan Grossman CSE505 Fall 2006, Lecture 12 5

'

&

$

%

Start simpler

Our interface has a lot going on:

1. Element types held abstract from library.

2. List type (constructor) held abstract from client.

3. Reuse of type variables “makes connections” among expressions of

abstract types.

4. Lists need some form of recursive type

• STλC has no unbounded data structures (except maybe

functions).

Today just consider (1) and (3)

• First using a formal language with explicit type abstraction.

• Then highlight differences with ML.

Note: Much more interesting than “not getting stuck”

Dan Grossman CSE505 Fall 2006, Lecture 12 6

'

&

$

%

Syntax

e ::= c | x | λx:τ . e | e e | Λα. e | e[τ]

τ ::= int | τ → τ | α | ∀α.τ

v ::= c | λx:τ . e | Λα. e

Γ ::= · | Γ, x:τ

∆ ::= · | ∆, α

New:

• Type variables

• Types, terms, and contexts to know “what type variables are in

scope” (much like we did for term variables)

• Type-applications to instantiate polymorphic expressions

Dan Grossman CSE505 Fall 2006, Lecture 12 7

'

&

$

%

Semantics

Our evaluation judgment (e.g., small-step left-right e → e′) still looks

the same. Just two new rules (note Λα. e a value):

e → e′

e[τ] → e′[τ] (Λα. e)[τ] → e[τ/α]

(Plus definition of e[τ ′/α] and τ [τ ′/α] in the straightforward

capture-avoiding way.)

Example (using addition):

(Λα. Λβ. λx : α. λf :α → β. f x) [int] [int] 3 (λy : int. y + y)

Dan Grossman CSE505 Fall 2006, Lecture 12 8

'

&

$

%

Typing

Mostly we just get picky about “no free type variables”:

• Typing judgment has the form ∆; Γ ` e : τ

(whole program ·; · ` e : τ).

• Uses helper judgment ∆ ` τ (i.e., FTV (τ) ⊆ ∆).

New rules:

∆, α; Γ ` e : τ1

∆; Γ ` Λα. e : ∀α.τ1

∆; Γ ` e : ∀α.τ1 ∆ ` τ2

∆; Γ ` e[τ2] : τ1[τ2/α]

(Also modify rule for functions so argument type cannot make up type

variables (that is what Λα. e is for).)

Example (using addition):

(Λα. Λβ. λx : α. λf :α → β. f x) [int] [int] 3 (λy : int. y + y)

Dan Grossman CSE505 Fall 2006, Lecture 12 9

'

&

$

%

Really picky

Allowing free type variables will burn the language

designer/implementor. It’s boring, but too important to omit.

∆ ` τ

α ∈ ∆

∆ ` α ∆ ` int

∆ ` τ1 ∆ ` τ2

∆ ` τ1 → τ2

∆, α ` τ

∆ ` ∀α.τ

Want this technical theorem:

If ∆; Γ ` e : τ and (∀x ∈ Dom(Γ). ∆ ` Γ(x)), then ∆ ` τ .

That is, “type-checker doesn’t let type variables escape scope”.

In practice, you put just enough hypotheses of the form ∆ ` τ in your

typing rules that the theorem holds.

Dan Grossman CSE505 Fall 2006, Lecture 12 10

'

&

$

%

The Whole Language (called System F)
e ::= c | x | λx:τ . e | e e | Λα. e | e[τ]
τ ::= int | τ → τ | α | ∀α.τ
v ::= c | λx:τ . e | Λα. e
Γ ::= · | Γ, x:τ
∆ ::= · | ∆, α

e → e′

e e2 → e′ e2

e → e′

v e → v e′

e → e′

e[τ] → e′[τ]

(λx:τ . e)v → e[v/x] (Λα. e)[τ] → e[τ/α]

∆; Γ ` x : Γ(x) ∆; Γ ` c : int

∆;Γ, x:τ1 ` e : τ2 ∆ ` τ1

∆;Γ ` λx:τ1. e : τ1 → τ2

∆, α; Γ ` e : τ1

∆;Γ ` Λα. e : ∀α.τ1

∆;Γ `e1 : τ2 →τ1 ∆;Γ ` e2 : τ2

∆;Γ ` e1 e2 : τ1

∆;Γ `e : ∀α.τ1 ∆`τ2

∆;Γ ` e[τ2] : τ1[τ2/α]

Dan Grossman CSE505 Fall 2006, Lecture 12 11

'

&

$

%

Examples

An overly simple polymorphic function...

Let id = Λα. λx : α. x

• id has type ∀α.α → α

• id [int] has type int → int

• id [int ∗ int] has type (int ∗ int) → (int ∗ int)

• (id [∀α.α → α]) id has type ∀α.α → α

In ML you can’t do the last one; in System F you can.

Dan Grossman CSE505 Fall 2006, Lecture 12 12

'

&

$

%

More Examples

Let applyOld = Λα. Λβ. λx : α. λf : α → β. f x

• applyOld has type ∀α.∀β.α → (α → β) → β

• ·; x:int → int ` (apply1 [int][int] 3 x) : int

Let applyNew = Λα. λx : α. Λβ. λf : α → β. f x

• applyNew has type ∀α.α → (∀β.(α → β) → β)
(impossible in ML)

• ·; x:int → string, y:int → int `
(let z = applyNew [int] in z (z 3 [int] y) [string] x) : string

Let twice = Λα. λx : α. λf : α → α. f (f x).

• twice has type ∀α.α → (α → α) → α

• Cannot be made more polymorphic.

Dan Grossman CSE505 Fall 2006, Lecture 12 13

'

&

$

%

Metatheory

• Type-safe (need a Type Substitution Lemma)

• All programs terminate (shocking!! we saw id [τ] id)

• Parametricity, theorems for free

– Example: If ·; · ` e : ∀α.∀β.(α ∗ β) → (β ∗ α), then e is

equivalent to Λα. Λβ. λx:α ∗ β. (x.2, x.1).
Every term with this type is the swap function!!

Intuition: e has no way to make an α or a β and it cannot tell what α

or β are or raise an exception or diverge...

• Types do not affect run-time behavior

Dan Grossman CSE505 Fall 2006, Lecture 12 14

'

&

$

%

Where are we

Understand parametric polymorphism and our ML-like list interface.

• Defined System F, saw “simple” examples

• Stated some unbelievable theorems

Now:

• “Security” example

• Discuss erasure

• Relate to ML

Dan Grossman CSE505 Fall 2006, Lecture 12 15

'

&

$

%

Security from safety?

Example: A thread e should not access files it did not open (fopen can

check permissions)

• Type-check an untrusted thread e:

·; · ` e : ∀α.{fopen : string → α, fread : α → int} → unit.

• Type-check spawn: ·; · ` spawn :
∀α.({fopen : string → α, fread : α → int} → unit) → unit

• Implement spawn v: “enqueue”

(v[int]{fopen = λx:string. (. . .), fread = λx:int. (. . .)})

Type-checker ensures that if thread A passes a file-handle but not

“its” fopen to thread B, then thread B cannot call fread with that

file-handle. No run-time per-read check required!

Dan Grossman CSE505 Fall 2006, Lecture 12 16

'

&

$

%

Moral of Example

In STλC, type safety just means not getting stuck.

With type abstraction, it enables secure interfaces!

Parametricity ensures any value passed to fread came from this thread

calling fopen...

Suppose we (the system library) implement file-handles as ints. Then

we instantiate α with int, but untrusted code cannot tell.

Memory safety is a necessary but insufficient condition for

language-based enforcement of strong abstractions

Dan Grossman CSE505 Fall 2006, Lecture 12 17

'

&

$

%

Has anything changed?

We said polymorphism was about “many types for same term”, but for

clarity and easy checking, we changed the syntax via Λα. e and e [τ]
and the operational semantics via type substitution.

Claim: The operational semantics did not “really” change; types need

not exist at run-time.

More formally: There is a translation from System F to the untyped

lambda-calculus (with constants) that erases all types and produces an

equivalent program.

Strengthened induction hypothesis: If e → e1 in System F and

erase(e) → e2 in untyped λ, then e2 = erase(e1).

“Erasure and evaluation commute”

Dan Grossman CSE505 Fall 2006, Lecture 12 18

'

&

$

%

Erasure

Erasure is easy to define:

erase(c) = c

erase(x) = x

erase(e1 e2) = erase(e1) erase(e2)

erase(λx:τ . e) = λx. erase(e)

erase(Λα. e) = λ . erase(e)

erase(e [τ]) = erase(e) 0

In pure System F, preserving evaluation order isn’t crucial, but it is

with fix, exceptions, mutation, etc.

Dan Grossman CSE505 Fall 2006, Lecture 12 19

'

&

$

%

Connection to reality

System F has been one of the most important theoretical PL models

since the early 70s and inspires languages like ML.

But you have seen ML polymorphism and it looks different. In fact, it

is an implicitly typed restriction of System F.

And these two things ((1) implicit, (2) restriction) have everything to

do with each other.

Dan Grossman CSE505 Fall 2006, Lecture 12 20

'

&

$

%

Restrictions

• All types have the form ∀α1, . . . , αn.τ where n ≥ 0 and τ has

no ∀. (Prenex-quantification; no first-class polymorphism.)

• Only let (rec) variables (e.g., x in let x = e1 in e2) can have

polymorphic types. So n = 0 for function arguments, pattern

variables, etc. (Let-bound polymorphism)

– So cannot (always) desugar let to λ in ML.

• For let rec f x = e1 in e2, the variable f can have type

∀α1, . . . , αn.τ1 → τ2 only if every use of f in e1 instantiates

each αi with αi. (No polymorphic recursion)

• Let variables can be polymorphic only if e1 is a “syntactic value”

– a variable, constant, function definition, ...

– Called the “value restriction”

Dan Grossman CSE505 Fall 2006, Lecture 12 21

'

&

$

%

Why? (Part 1)

ML-style polymorphism can seem weird after you have seen System F.

And the restrictions do come up in practice, though tolerable.

• Type inference for System F (given untyped e, is there a System F

term e′ such that erase(e′) = e) is undecidable. (1995).

• Type inference for ML with polymorphic recursion is undecidable

(1992).

• Type inference for ML is decidable and efficient in practice,

though pathological programs of size O(n) and run-time O(n)
can have types of size O(22n

).

• The type inference algorithm (which many of you have seen in

AI!) is unsound in the presence of ML-style mutation, but the

value-restriction restores soundness.

Dan Grossman CSE505 Fall 2006, Lecture 12 22

'

&

$

%

Recovering lost ground?

Extensions to the ML type system to be closer to System F are judged

by:

• Soundness: Do programs still not get stuck?

• Conservatism: Does every old ML program still type-check?

• Power: Does it accept all/most programs from System F?

• Convenience: Are many new types still inferred?

Proposals are getting mature; will probably happen soon.

Dan Grossman CSE505 Fall 2006, Lecture 12 23

'

&

$

%

That was a lot!

We saw System F and discussed its many amazing properties.

We compared System F to ML-style polymorphism, which should make

more sense now.

Next up: Recursive types and existential types (which complete our list

example)

In other versions of 505:

• How to do type inference for ML (algorithm almost fits on a slide).

• Mutation (may revisit, but on homework)

Dan Grossman CSE505 Fall 2006, Lecture 12 24

