
'

&

$

%

CSE 505: Concepts of Programming Languages

Dan Grossman

Fall 2006

Lecture 13

ML, Recursive Types, and Type Abstraction

Dan Grossman CSE505 Fall 2006, Lecture 13 1

'

&

$

%

Where are we

• System F gave us type abstraction (code reuse, strong

abstractions)

• Need to discuss erasure and relate to ML (lecture 12, slides 19–24)

• Recursive Types

– For building unbounded data structures

– Turing-completeness without a fix primitive

• Existential types

– First-class abstract types

– Close relation to closures and objects

Dan Grossman CSE505 Fall 2006, Lecture 13 2

'

&

$

%

Recursive Types

We could add list types (list(τ)) and primitives ([], ::, match), but we

want user-defined recursive types.

Intuition:

type intlist = Empty | Cons int * intlist

Which is roughly:

type intlist = unit + (int * intlist)

Seems like a named type is unavoidable.

But that’s what we thought with let rec and we used fix.

Instead of fix λx. e, we’ll do µα.τ .

Dan Grossman CSE505 Fall 2006, Lecture 13 3

'

&

$

%

Mighty µ

In τ , type variable α stands for µα.τ , bound by µ.

Examples (of many possible encodings):

• int list (finite or infinite): µα.unit + (int ∗ α)

• int list (infinite “stream”): µα.int ∗ α

– Need laziness (thunking) or mutation to build such a thing

• int list list: µα.unit + ((µβ.unit + (int ∗ β)) ∗ α)

Examples where type variables appear multiple times:

• int tree (data at nodes): µα.unit + (int ∗ α ∗ α)

• int tree (data at leaves): µα.int + (α ∗ α)

Dan Grossman CSE505 Fall 2006, Lecture 13 4

'

&

$

%

Using µ types

How do we build and use int lists (µα.unit + (int ∗ α))?

We would like:

• empty list = A(()).
Has type: µα.unit + (int ∗ α).

• cons = λx:int. λy:(µα.unit + (int ∗ α)). B((x, y)).
Has type:

int → (µα.unit + (int ∗ α)) → (µα.unit + (int ∗ α))

• head =

λx:(µα.unit + (int ∗ α)). match x with A . A(()) | By. B(y.1).
Has type: (µα.unit + (int ∗ α)) → (unit + int).

But our typing rules allow none of this (yet).

Dan Grossman CSE505 Fall 2006, Lecture 13 5

'

&

$

%

Using µ types continued

For empty list = A(()), one typing rule applies:

∆; Γ ` e : τ1 ∆ `τ2

∆; Γ ` A(e) : τ1 + τ2

So we could show

∆; Γ ` A(()) : unit + (int ∗ (µα.unit + (int ∗ α)))
(since FTV (int ∗ µα.unit + (int ∗ α)) = ∅ ⊂ ∆).

But we want µα.unit + (int ∗ α).

Notice: (unit + (int ∗ α))[(µα.unit + (int ∗ α))/α] is

unit + (int ∗ (µα.unit + (int ∗ α))).

The key: Subsumption — recursive types are equal to their “unrolling”

Dan Grossman CSE505 Fall 2006, Lecture 13 6

'

&

$

%

Return of subtyping

So we could use subsumption and these subtyping rules:

roll

τ [(µα.τ)/α] ≤ µα.τ

unroll

µα.τ ≤ τ [(µα.τ)/α]

Subtyping can “roll” or “unroll” a recursive type. (Depth subtyping on

recursive types is very interesting.)

Can now give empty-list, cons, and head the types we want:

Constructors use roll, destructors use unroll.

Notice how little we did: One new form of type (µα.τ) and two new

subtyping rules.

Dan Grossman CSE505 Fall 2006, Lecture 13 7

'

&

$

%

Metatheory

Despite our minimal additions, we must reconsider how recursive types

change STλC and System F:

• Erasure (no run-time effect): unchanged

• Termination: changed!

– (λx:µα.α → α. x x)(λx:µα.α → α. x x)

– In fact, we’re now Turing-complete without fix

(actually, can type-check every closed λ term)

• Safety: still safe, but Canonical Forms harder

• Inference: Shockingly efficient for “STλC plus µ”. (A great

contribution of PL theory with applications in OO and

XML-processing languages.)

Dan Grossman CSE505 Fall 2006, Lecture 13 8

'

&

$

%

Syntax-directed µ types

Recursive types via subsumption “seems magical” – we can also do it

explicitly by telling the type-checker how to roll and unroll.

“Iso-recursive” types (remove subtyping, add expressions):

τ ::= . . . | µα.τ

e ::= . . . | rollµα.τ e | unroll e
v ::= . . . | rollµα.τ v

e → e′

rollµα.τ e → rollµατ e′

e → e′

unroll e → unroll e′

unroll (rollµα.τ v) → v

∆; Γ ` e : τ [(µα.τ)/α]

∆; Γ ` rollµα.τ e : µα.τ

∆; Γ ` e : µα.τ

∆; Γ ` unroll e : τ [(µα.τ)/α]

Dan Grossman CSE505 Fall 2006, Lecture 13 9

'

&

$

%

Syntax-directed, cont’d

Type-checking is syntax-directed / No subtyping necessary.

Canonical Forms, Preservation, and Progress are simpler.

This is an example of a key trade-off in language design:

• Implicit typing can be impossible, difficult, or confusing

• Explicit coercions can be annoying and clutter language with

no-ops

• Most languages do some of each

Anything is decidable if you make the code producer give the

implementation enough “hints” about the “proof”.

Dan Grossman CSE505 Fall 2006, Lecture 13 10

'

&

$

%

ML datatypes revealed

How does µα.τ relate to type t = Foo of int | Bar of int *

t...

Using a constructor is a “sum-injection” then implicit roll.

So Foo e is really rollt Foo(e).
That is, C e has type t (the rolled type).

A pattern-match has an implicit unroll.

So match e with... is match unroll e with...

This “trick” works because different recursive types use different tags

(so we know what type to roll to).

Dan Grossman CSE505 Fall 2006, Lecture 13 11

'

&

$

%

Back to our goal

We are understanding this interface and its nice properties:

type ’a mylist;

val mt_list : ’a mylist

val cons : ’a -> ’a mylist -> ’a mylist

val decons : ’a mylist -> ((’a * ’a mylist) option)

val length : ’a mylist -> int

val map : (’a -> ’b) -> ’a mylist -> ’b mylist

We can now do it, if we expose the definition of mylist.

mt_list : ∀α.µβ.unit + (α ∗ β)
cons: ∀α.α → (µβ.unit + (α ∗ β)) → (µβ.unit + (α ∗ β))

(Can implement these functions in System F with µ)

Dan Grossman CSE505 Fall 2006, Lecture 13 12

'

&

$

%

Abstract Types

So that clients cannot “forge” lists or rely on their implementation

(breaking code if we change the type definition), we want to hide what

mylist actually is.

Define an interface such that (well-typed) list-clients cannot break the

list-library abstraction.

To simplify the discussion (very slightly), we’ll consider just

myintlist.

(mylist is a type constructor, a function that given a type gives an

(abstract-to-the-client) type).

Dan Grossman CSE505 Fall 2006, Lecture 13 13

'

&

$

%

The Type-Application Approach

We can hide myintlist like we hid file-handles:

(Λα. λx:τ1. list client) [τ2] list library

where:

• τ1 is

{mt : α,

cons : int → α → α,

decons : α → unit + (int ∗ α),
. . .}

• τ2 is µβ.unit + (int ∗ β)

• list client projects from record x to get list functions

Dan Grossman CSE505 Fall 2006, Lecture 13 14

'

&

$

%

Evaluating ADT via Type Application

(Λα. λx:τ1. list client) [τ2] list library

Plus:

• Effective

• Straightforward use of System F

Minus:

• The library does not say myintlist should be abstract; it relies

on clients to abstract it.

• Cannot put a bunch of list-libraries in a data structure because

they have different types.

– Lists produced by different libraries must have different types,

but libraries can have the same type.

Dan Grossman CSE505 Fall 2006, Lecture 13 15

'

&

$

%

The OO Approach

mt list :
µβ.{cons : int → β, decons : unit → (unit + (int ∗ β)), . . .}

mt list is an object (a record of functions plus private state).

The cons field holds a function that returns a new record of functions.

Implementation uses recursion and “hidden fields” in an essential way.

• In ML, free variables are the “hidden fields”.

• In OO, private fields or abstract interfaces “hide fields”.

(See Caml code for a slightly different example.)

Dan Grossman CSE505 Fall 2006, Lecture 13 16

'

&

$

%

Evaluation Closure/OO Approach

Plus:

• It works in popular languages (no explicit type variables).

• List-libraries have the same type.

Minus:

• Changed the interface (no big deal?)

• Fails on “strong” binary ((n > 1)-ary) operations

– Have to write append in terms of cons and decons

– Can be impossible

(silly example: see type t2 in ML file)

Dan Grossman CSE505 Fall 2006, Lecture 13 17

'

&

$

%

The Existential Approach

We achieved our goal two different ways, but each had some

drawbacks.

There is a direct way to model ADTs that captures their essence quite

nicely: types of the form ∃α.τ .

Can be formalized, but we’ll just show the idea and how we can use it

to encode closures (e.g., for callbacks).

(Come ask me if you want to see the semantics and typing rules.)

Preaching: Existential types have been around for over 20 years. They

are not that complicated. They should be in our PLs.

Dan Grossman CSE505 Fall 2006, Lecture 13 18

'

&

$

%

Our library with ∃
pack (µα.unit + (int ∗ α)), list library as

∃β.{mt : β,

cons : int → β → β,

decons : β → unit + (int ∗ β), . . .}

Another library would “pack” a different type and implementation, but

have the same overall type.

Libraries are first-class, but a use of a library must be in a scope that

“remembers which β” describes that library.

(If use two libraries in same scope, can’t pass the result of one’s cons

to the other’s decons because the two libraries will use different type

variables.)

Binary operations work fine: add append : β → β → β

Dan Grossman CSE505 Fall 2006, Lecture 13 19

'

&

$

%

Closures and Existentials

There’s a deep connection between existential types and how closures

are used/compiled. “Call-backs” are the canonical example.

Caml:

• Interface: val onKeyEvent : (int -> unit) -> unit

• Implementation:

let callBacks : (int -> unit) list ref = ref []

let onKeyEvent f = callBacks := f::(!callBacks)

let keyPress i = List.iter (fun f -> f i) !callBacks

Each registered function can have a different environment (free

variables of different types), yet every function has type int->unit

Dan Grossman CSE505 Fall 2006, Lecture 13 20

'

&

$

%

Closures and Existentials
C:

typedef struct { void* env; void (*f)(void*,int); } * cb_t;

• Interface: void onKeyEvent(cb_t);

• Implementation (assuming a list library):

list_t callBacks = NULL;

void onKeyEvent(cb_t cb){callBacks=cons(cb,callBacks);}

void keyPress(int i) {

for(list_t lst=callBacks; lst!=NULL; lst=lst->tl)

lst->hd->f(lst->hd->env, i);

}

Standard problems using subtyping (t*≤void*) instead of α:

• Client must provide an f that casts back to t*.

• Typechecker lets library pass any pointer to f.

Dan Grossman CSE505 Fall 2006, Lecture 13 21

'

&

$

%

Closures and Existentials

Cyclone (aka Dan’s thesis): (has ∀α.τ and ∃α.τ but not closures)

typedef struct {<‘a> env; void (*f)(‘a,int); } * cb_t;

• Interface: void onKeyEvent(cb_t);

• Implementation (assuming a list library):

list_t<cb_t> callBacks = NULL;

void onKeyEvent(cb_t cb){callBacks=cons(cb,callBacks);}

void keyPress(int i) {

for(list_t<cb_t> lst=callBacks; lst!=NULL; lst=lst->tl) {

let {<‘a> x, y} = *lst->hd; // pattern-match

y(x,i); // no other argument to y typechecks!

}

}

Note shown: When creating a cb_t, must prove “the types match up”.

Dan Grossman CSE505 Fall 2006, Lecture 13 22

