
'

&

$

%

CSE 505: Concepts of Programming Languages

Dan Grossman

Fall 2006

Lecture 14

Concurrency and Shared Memory

Dan Grossman CSE505 Fall 2006, Lecture 14 1



'

&

$

%

Concurrency

• PL support for concurrency a huge topic

– And increasingly important (first time in lecture in 505)

• We’ll just do explicit threads plus:

– Shared memory (locks and transactions)

– Synchronous message passing (Concurrent ML)

• We’ll skip

– Process calculi (foundational message-passing)

– Futures and asynchronous methods

– Data-parallel languages (Snyder)

– ...

• Mostly in ML syntax (inference rules where convenient)

Dan Grossman CSE505 Fall 2006, Lecture 14 2



'

&

$

%

Threads

High-level: “Communicating sequential processes”

Low-level: “Multiple stacks plus communication”

From Caml’s thread.mli:

type t (* a thread handle; remember we’re in module Thread *)

val create : (’a->’b) -> ’a -> t (* run new thread *)

val self : unit -> t (* what thread is executing this? *)

The code for a thread is in a closure (with hidden fields) and

Thread.create actually spawns the thread.

Most languages make the same distinction, e.g., Java:

• Create a Thread object (just the code and data)

• Call its run method to actually spawn the thread.

Dan Grossman CSE505 Fall 2006, Lecture 14 3



'

&

$

%

Why use threads?

Any one of:

1. Performance (multiprocessor or mask I/O latency)

2. Isolation (separate errors or responsiveness)

3. Natural code structure (1 stack awkward)

It’s not just performance.

Terminology sometimes used (but not universally known):

• Concurrency : interleaved pre-emptive scheduling

• Parallelism: multiple actually at the same time

Dan Grossman CSE505 Fall 2006, Lecture 14 4



'

&

$

%

One possible formalism (no thread-ids)

• Program state is one heap and multiple expressions

• Any ei might “take the next step” and potentially spawn a thread

• A value in the “thread-pool” is removable

• Nondeterministic with interleaving granularity determined by rules

Some example rules for H; e → H ′; e′; o (where o ::= · | e):

H; !l → H; H(l); · H; spawn(v1, v2) → H; 0; (v1 v2)

H; e1 → H ′; e′
1; o

H; e1e2 → H ′; e′
1e2; o

Dan Grossman CSE505 Fall 2006, Lecture 14 5



'

&

$

%

Formalism continued

The H; e → H ′; e′; o judgment is just a helper-judgment for

H; T → H ′; T ′ where T ::= · | e; T

H; e → H ′; e′; ·
H ′; e1; . . . ; e; . . . ; en → H ′; e1; . . . ; e′; . . . ; en

H; e → H ′; e′; e′′

H ′; e1; . . . ; e; . . . ; en → H ′; e1; . . . ; e′; . . . ; en; e′′

H; e1; . . . ; ei−1; v; ei+1; . . . ; en → H; e1; . . . ; ei−1; ei+1; . . . ; en

Program termination: H; ·

Dan Grossman CSE505 Fall 2006, Lecture 14 6



'

&

$

%

Equivalence just changed

Expressions equivalent in a single-threaded world are not necessarily

equivalent in a multithreaded context!

Example in Caml:

let x, y = ref 0, ref 0

let _ = create (fun () -> if (!y)=1 then x:=(!x)+1)

let _ = create (fun () -> if (!x)=1 then y:=(!y)+1) (* 1 *)

Can we replace line (1) with:

create (fun () -> y:=(!y)+1; if (!x)<>1 then y:=(!y)-1)

For more compiler gotchas, see “Threads cannot be implemented as a

library” by Hans-J. Boehm in PLDI2005

Dan Grossman CSE505 Fall 2006, Lecture 14 7



'

&

$

%

Communication

If threads do nothing other threads needed to see, we are done

• Best to do as little communication as possible

• E.g., do not mutate shared data unnecessarily

One way to communicate: Shared memory

• One thread writes to a ref, another reads it

• Sounds nasty with pre-emptive scheduling

• Hence synchronization mechanisms

– Taught in O/S for historical reasons!

– Fundamentally about restricting interleavings

Dan Grossman CSE505 Fall 2006, Lecture 14 8



'

&

$

%

Join
“Fork-join” parallelism a simple approach good for “farm out

subcomputations then merge results”

(* suspend caller until/unless arg terminates *)

val join : t -> unit

Common pattern:

val fork_join : (’a -> ’b array) -> (* divider *)

(’b -> ’c) -> (* conqueror *)

(’c array -> ’d) -> (* merger *)

’a -> (* data *)

’d

Apply the second argument to each element of the ’b array in

parallel, then use third argument after they are done.

See lec14.ml for an (untested) implementation.

Dan Grossman CSE505 Fall 2006, Lecture 14 9



'

&

$

%

Locks (a.k.a. mutexes)

(* mutex.mli *)

type t (* a mutex *)

val create : unit -> t

val lock : t -> unit (* may block *)

val unlock : t -> unit

Caml locks do not have two common features:

• Reentrancy (changes semantics of lock)

• Banning nonholder release (changes unlock semantics)

Also want condition variables (condition.mli), but skipping

Dan Grossman CSE505 Fall 2006, Lecture 14 10



'

&

$

%

Using locks

Among infinite correct idioms using locks (and more incorrect ones),

the most common:

• Determine what data must be “kept in sync”

• Always acquire a lock before accessing that data and release it

afterwards

• Have a partial order on all locks and if a thread holds m1 it can

acquire m2 only if m1 < m2.

See canonical “bank account” example in lec14.ml.

Coarser locking (more data with same lock) trades off parallelism with

synchronization. (Related: Performance-bug of false sharing.)

Dan Grossman CSE505 Fall 2006, Lecture 14 11



'

&

$

%

Getting it wrong

Races result from too little synchronization

• Data races: simultaneous read-write or write-write of same data

– Lots of PL work in last 10 years on types and tools to

prevent/detect.

– Provided language has some guarantees, may not be a bug

∗ Canonical example: parallel search and “done” bits

• Higher-level races: much tougher to prevent in the language

– Amount of correct nondeterminism inherently app-specific

Deadlock results from too much synchronization

• Cycle of threads waiting for someone else to do something

• Easy to detect dynamically with locks, but then what?

Dan Grossman CSE505 Fall 2006, Lecture 14 12



'

&

$

%

The Evolution Problem
Write a new function that needs to update o1 and o2 together.

• What locks should you acquire? In what order?

There may be no answer that avoids races and deadlocks without

breaking old code. (Need a stricter partial order.)

See xfer code in lec14.ml, which is yet another binary-method

problem for OOP. Real example from Java:

synchronized append(StringBuffer sb) {

int len = sb.length(); //synchronized call

if(this.count+len > this.value.length) this.expand(...);

sb.getChars(0,len,this.value,this.count); //synchronized call

...

}

Undocumented in 1.4; in 1.5 caller synchronizes on sb if necessary.

Dan Grossman CSE505 Fall 2006, Lecture 14 13



'

&

$

%

Software Transactions

One of the hottest areas in CS research right now (me too).

Java: atomic { s }

Caml: atomic : (unit -> ’a) -> ’a

Execute the body/thunk as though there is no interleaving by other

threads, while ensuring some scheduling fairness.

Most research on implementation (preserve parallelism unless there are

true memory conflicts at run-time), but 505 not an implementation

course.

Dan Grossman CSE505 Fall 2006, Lecture 14 14



'

&

$

%

Transactions compose

Problems like append and xfer become trivial.

So does mixing coarse-grained and fine-grained operations (e.g.,

hashtable lookup and hashtable resize).

Transactions are great, but not a panacea:

• Application-level races can remain

• Application-level deadlock can remain

• Implementations generally try-and-abort, which is hard for “launch

missiles” (e.g., I/O)

• Many software implementations provide a weaker and

under-specified semantics (come ask me)

• Memory-model questions appear worse than with locks (ongoing

research) ...

Dan Grossman CSE505 Fall 2006, Lecture 14 15



'

&

$

%

Memory models

A memory model for a concurrent shared-memory language specifies

“which write a read can see”.

The gold standard is sequential consistency (Lamport): “the results of

any execution is the same as if the operations of all the processors

were executed in some sequential order, and the operations of each

individual processor appear in this sequence in the order specified by

its program”

Under sequential consistency, this assert cannot fail:

let x, y = ref 0, ref 0

let _ = create (fun () -> x := 1; y := 1)

let _ = create (fun () -> let r = !y in let s = !x in

assert(s>=r)

Dan Grossman CSE505 Fall 2006, Lecture 14 16



'

&

$

%

Relaxed memory models

Modern imperative and OO languages do not promise sequential

consistency (if they say anything at all)

• The hardware makes it prohibitively expensive

• Renders unsound almost every compiler optimization (e.g.,

common-subexpression elimination)

But (especially in a safe language) have to promise something

• When is code “correctly synchronized”?

• What can a compiler do in the presence of races? (E.g., cannot

seg-fault Java)

The definitions are very complicated and programmers can usually

ignore them, but do not assume sequential consistency.

Dan Grossman CSE505 Fall 2006, Lecture 14 17



'

&

$

%

Ordering and atomic

Initially x==y==0

Thread 1 Thread 2

x=1; r=y;

y=1; s=x;

Can s be less than r?

Yes.

Dan Grossman CSE505 Fall 2006, Lecture 14 18



'

&

$

%

Ordering and atomic

Initially x==y==0

Thread 1 Thread 2

x=1; r=y;

sync(lk){} sync(lk){}

y=1; s=x;

Can s be less than r?

In Java, no.

Dan Grossman CSE505 Fall 2006, Lecture 14 19



'

&

$

%

Ordering and atomic

Initially x==y==0

Thread 1 Thread 2

x=1; r=y;

atomic{} atomic{}

y=1; s=x;

Can s be less than r?

Nobody has decided (in practice, yes)! (See my October 06 paper.)

Dan Grossman CSE505 Fall 2006, Lecture 14 20


