CSE 505: Concepts of Programming Languages

Dan Grossman
Fall 2006
Lecture 7-Substitution; Simply Typed Lambda Calculus

Where we are

- Introduced $\boldsymbol{\lambda}$-calculus to model scope and functions.
- CBV $\boldsymbol{\lambda}$-calculus models higher-order functions in languages like ML and Scheme very well (and functions/function-pointers in C).
- Call-by-need deserves more airtime than I am giving it.
- Still need to define substitution.
- Then 2-3 weeks on type systems.
- Plus a digression about stack-machines and continuations
- Then concurrency.
- Then objects.

Review

λ-calculus syntax:

$$
\begin{aligned}
e & ::=\lambda x . e|x| e e \\
v & ::=\lambda x . e
\end{aligned}
$$

Call-By-Value Left-Right Small-Step Operational Semantics:
$\overline{(\lambda x . e) v \rightarrow e[v / x]} \quad \frac{e_{1} \rightarrow e_{1}^{\prime}}{e_{1} e_{2} \rightarrow e_{1}^{\prime} e_{2}} \quad \frac{e_{2} \rightarrow e_{2}^{\prime}}{v e_{2} \rightarrow v e_{2}^{\prime}}$

Call-By-Name Small-Step Operational Semantics:

$$
\overline{(\lambda x . e) e^{\prime} \rightarrow e\left[e^{\prime} / x\right]} \quad \frac{e_{1} \rightarrow e_{1}^{\prime}}{e_{1} e_{2} \rightarrow e_{1}^{\prime} e_{2}}
$$

Call-By-Need in theory "optimizes" Call-By-Name.
For most of course, assume CBV Left-Right.

Formalism not done yet

Need to define substitution-shockingly subtle.
Informally: $e\left[e^{\prime} / x\right]$ " replaces occurrences of x in e with e' "
Attempt 1:

$$
\begin{array}{cc}
\overline{x[e / x]=e} & \frac{y \neq x}{y[e / x]=y} \quad \frac{e_{1}[e / x]=e_{1}^{\prime}}{\left(\lambda y \cdot e_{1}\right)[e / x]=\lambda y \cdot e_{1}^{\prime}} \\
& \frac{e_{1}[e / x]=e_{1}^{\prime}}{\left(e_{1} e_{2}\right)[e / x]=e_{1}^{\prime} e_{2}^{\prime}}
\end{array}
$$

Getting substitution right

Attempt 2:

$$
\frac{e_{1}[e / x]=e_{1}^{\prime} \quad y \neq x}{\left(\lambda y \cdot e_{1}\right)[e / x]=\lambda y \cdot e_{1}^{\prime}} \quad \overline{\left(\lambda x . e_{1}\right)[e / x]=\lambda x . e_{1}}
$$

What if e is \boldsymbol{y} or $\boldsymbol{\lambda} \boldsymbol{z} . \boldsymbol{y}$ or, in general \boldsymbol{y} is free in \boldsymbol{e} ? This mistake is called capture.

It doesn't happen under CBV/CBN if our source program has no free variables.

Can happen under full reduction.

Another Try

Attempt 3:
First define the "free variables of an expression" $\boldsymbol{F} \boldsymbol{V}(\boldsymbol{e})$:

$$
\begin{aligned}
F V(x) & =\{x\} \\
F V\left(e_{1} e_{2}\right) & =F V\left(e_{1}\right) \cup F V\left(e_{2}\right) \\
F V(\lambda x . e) & =F V(e)-\{x\}
\end{aligned}
$$

Now define substitution with these rules for functions:

$$
\frac{e_{1}[e / x]=e_{1}^{\prime} \quad y \neq x \quad y \notin F V(e)}{\left(\lambda y \cdot e_{1}\right)[e / x]=\lambda y \cdot e_{1}^{\prime}} \quad \overline{\left(\lambda x . e_{1}\right)[e / x]=\lambda x \cdot e_{1}}
$$

But a partial definition (as stands, could get stuck because there is no substitution).

Implicit Renaming

A partial definition because of the syntactic accident that \boldsymbol{y} was used as a binder (should not be visible - local names shouldn't matter).

So we allow implicit systematic renaming (of a binding and all its bound occurrences). So the left rule can always apply (can drop the right rule).

In general, we never distinguish terms that differ only in the names of variables. (A key language-design principle!)

So now even "different syntax trees" can be the "same term".

Summary and some jargon

- If everything is a function, every step involves an application: $(\lambda x . e) e^{\prime} \rightarrow e\left[e^{\prime} / x\right]$ (called β-reduction)
- Substitution avoids capture via implicit renaming (called α-conversion)
- With full reduction, $(\boldsymbol{\lambda} \boldsymbol{x} . \boldsymbol{e} \boldsymbol{x}) \rightarrow \boldsymbol{e}$ makes sense if $\boldsymbol{x} \notin \boldsymbol{F} \boldsymbol{V}(\boldsymbol{e})$ (called $\boldsymbol{\eta}$-reduction), for CBV it can change termination behavior
- But advanced Camlers scoff at fun $x \rightarrow f x$, since that's equivalent to f.

Most languages use CBV application, some use call-by-need.
Our Turing-complete language models functions and encodes everything else.

Why types?

Our untyped $\boldsymbol{\lambda}$-calculus is universal, like assembly language. But we might want to allow fewer programs (whether or not we remain Turing complete):

1. Catch "simple" mistakes (e.g., "if" applied to "mkpair") early (too early? not usually)
2. (Safety) Prevent getting stuck (e.g., $\boldsymbol{x} \boldsymbol{e}$) (but for pure $\boldsymbol{\lambda}$-calculus, just need to prevent free variables)
3. Enforce encapsulation (an abstract type)

- clients can't break invariants
- clients can't assume an implementation
- requires safety

4. Assuming well-typedness allows faster implementations

- E.g., don't have to encode constants and plus as functions
- Don't have to check for being stuck
- orthogonal to safety (e.g., C)

5. Syntactic overloading (not too interesting)

- "late binding" (via run-time types) very interesting

6. Novel uses in vogue (e.g., prevent data races)

We'll mostly focus on (2) with informal investigation of (3)

What is a type system?

Er, uh, you know it when you see it. Some clues:

- A decidable (?) judgment for classifying programs (e.g., $\boldsymbol{e}_{1}+\boldsymbol{e}_{\mathbf{2}}$ has type int if $\boldsymbol{e}_{\mathbf{1}}$ and $\boldsymbol{e}_{\mathbf{2}}$ have type int else it has no type)
- Fairly syntax directed (non-example??: e terminates within 100 steps)
- A sound (?) abstraction of computation (e.g., if $e_{1}+e_{2}$ has type int, then evaluation produces an int (with caveats!))

This is a CS-centric, PL-centric view. Foundational type theory has more rigorous answers.

Plan for a couple weeks

- Simply typed $\boldsymbol{\lambda}$ calculus (ST λ C)
- (Syntactic) Type Soundness (i.e., safety)
- Extensions (pairs, sums, lists, recursion)
- Type variables (\forall, \exists, μ)
- Inference (not needing to write types)
- Later: References and exceptions (interesting even w/o types)
- Relation to ML (throughout)

And some other cool stuff as time permits...

Adding constants

Let's add integers to our CBV small-step $\boldsymbol{\lambda}$-calculus:

$$
\begin{aligned}
e & ::=\lambda x . e|x| e e \mid c \\
v & ::=\lambda x . e \mid c
\end{aligned}
$$

We could add + and other primitives or just paramterize "programs" by them: λ plus. e. (Like Pervasives in Caml.)
(Could do the same with constants, but there are lots of them)

$$
\overline{(\lambda x . e) v \rightarrow e[v / x]} \quad \frac{e_{1} \rightarrow e_{1}^{\prime}}{e_{1} e_{2} \rightarrow e_{1}^{\prime} e_{2}} \quad \frac{e_{2} \rightarrow e_{2}^{\prime}}{v e_{2} \rightarrow v e_{2}^{\prime}}
$$

What are the stuck states? Why don't we want them?

Wrong Attempt

$$
\tau::=\text { int } \mid \mathbf{f n}
$$

$\vdash e: \boldsymbol{\tau}$
$\overline{\vdash \lambda x . e: \mathrm{fn}} \overline{\vdash c: \mathrm{int}} \frac{\vdash e_{1}: \mathrm{fn} \vdash e_{2}: \mathrm{int}}{\vdash e_{1} e_{2}: \mathrm{int}}$

1. NO: can get stuck, $(\boldsymbol{\lambda} \boldsymbol{x} . \boldsymbol{y}) \mathbf{3}$
2. NO: too restrictive, $(\lambda x . \boldsymbol{x} 3)(\lambda y . y)$
3. NO: types not preserved, ($\boldsymbol{\lambda} \boldsymbol{x} . \boldsymbol{\lambda} \boldsymbol{y} \cdot \boldsymbol{y}) \mathbf{3}$

Getting it right

1. Need to type-check function bodies, which have free variables
2. Need to distinguish functions according to argument and result types

For (1): $\boldsymbol{\Gamma}::=\cdot \mid \boldsymbol{\Gamma}, \boldsymbol{x}: \boldsymbol{\tau}$ (a "compile-time heap"??) and $\boldsymbol{\Gamma} \vdash \boldsymbol{e}: \boldsymbol{\tau}$.
For (2): $\boldsymbol{\tau}::=$ int $\mid \boldsymbol{\tau} \rightarrow \boldsymbol{\tau}$ (an infinite number of types)
E.g.s: int \longrightarrow int, (int \longrightarrow int $) \longrightarrow$ int, int \longrightarrow (int \longrightarrow int).

Concretely, \rightarrow is right-associative $\tau_{1} \rightarrow \tau_{2} \rightarrow \tau_{3}$ is
$\tau_{1} \rightarrow\left(\tau_{2} \rightarrow \tau_{3}\right)$.

ST λ C Type System

$$
\begin{array}{cc}
\Gamma \vdash e: \tau & \tau::=\text { int } \mid \tau \rightarrow \tau \\
\overline{\Gamma \vdash c: \text { int }} & \Gamma::=\quad \mid \Gamma, x: \tau \\
\frac{\Gamma \vdash x: \Gamma(x)}{\Gamma \vdash \tau_{2}} \\
\hline \tau_{1} \rightarrow \tau_{2} & \frac{\Gamma \vdash e_{1}: \tau_{2} \rightarrow \tau_{1} \quad \Gamma \vdash e_{2}: \tau_{2}}{\Gamma \vdash e_{1} e_{2}: \tau_{1}}
\end{array}
$$

The function-introduction rule is the interesting one...

A closer look

$$
\frac{\Gamma, x: \tau_{1} \vdash e: \tau_{2}}{\Gamma \vdash \lambda x . e: \tau_{1} \rightarrow \tau_{2}}
$$

1. Where did $\boldsymbol{\tau}_{1}$ come from?

- Our rule "inferred" or "guessed" it.
- To be syntax directed, change $\boldsymbol{\lambda} \boldsymbol{x} . \boldsymbol{e}$ to $\boldsymbol{\lambda} \boldsymbol{x}: \boldsymbol{\tau} . \boldsymbol{e}$ and use that $\boldsymbol{\tau}$.

2. Can make $\boldsymbol{\Gamma}$ an abstract partial function if $\boldsymbol{x} \notin \operatorname{Dom}(\boldsymbol{\Gamma})$. Systematic renaming ($\boldsymbol{\alpha}$-conversion) allows it.
3. Still "too restrictive". E.g.: $\boldsymbol{\lambda} \boldsymbol{x} .(\boldsymbol{x}(\boldsymbol{\lambda} \boldsymbol{y} . \boldsymbol{y}))(\boldsymbol{x} 3)$ applied to $\boldsymbol{\lambda} \boldsymbol{z} . \boldsymbol{z}$ does not get stuck.

Always restrictive

"gets stuck" undecidable: If \boldsymbol{e} has no constants or free variables, then $\boldsymbol{e}(\mathbf{3} 4)$ (or $\boldsymbol{e} \boldsymbol{x}$) gets stuck iff \boldsymbol{e} terminates.

Old conclusion: "Strong types for weak minds" - need back door (unchecked cast)

Modern conclusion: Make "false positives" (reject safe program) rare and "false negatives" (allow unsafe program) impossible. Be
Turing-complete and convenient even when having to "work around" a false positive.

Justification: false negatives too expensive, have resources to use fancy type systems to make "rare" a reality.

Also: let compilers assume well-typedness (enable transformations)

Evaluating ST λC

1. Does $S T \boldsymbol{\lambda} C$ prevent false negatives? Yes.
2. Does ST $\boldsymbol{\lambda}$ C make false positives rare? No. (A starting point)

Big note: "Getting stuck" depends on the semantics. If we add $\boldsymbol{c} \boldsymbol{v} \rightarrow \mathbf{0}$ and $\boldsymbol{x} \boldsymbol{v} \longrightarrow 42$ we "don't need" a type system. Or we could say $\boldsymbol{c} \boldsymbol{v}$ and $\boldsymbol{x} \boldsymbol{v}$ "are values".

That is, the language dictator deemed $\boldsymbol{c} \boldsymbol{e}$ and free variables bad (not "answers" and not "reducible"). Our type system is a conservative checker that they won't occur.

Type Soundness

We will take a syntactic (operational) approach to soundness/safety (the popular way since the early 90s)...

Thm (Type Safety): If $\cdot \vdash \boldsymbol{e}: \boldsymbol{\tau}$ then \boldsymbol{e} diverges or $\boldsymbol{e} \longrightarrow^{\boldsymbol{n}} \boldsymbol{v}$ for an \boldsymbol{n} and \boldsymbol{v} such that $\cdot \vdash \boldsymbol{v}: \boldsymbol{\tau}$.

Proof: By induction on \boldsymbol{n} using the next two lemmas.
Lemma (Preservation): If $\cdot \vdash e: \tau$ and $e \rightarrow \boldsymbol{e}^{\prime}$, then $\cdot \vdash \boldsymbol{e}^{\prime}: \tau$.
Lemma (Progress): If $\cdot \vdash e: \tau$, then e is a value or there exists an e^{\prime} such that $e \rightarrow \boldsymbol{e}^{\prime}$.

Prove Progress today; Preservation next time...

Progress

Lemma: If $\cdot \vdash \boldsymbol{e}: \boldsymbol{\tau}$, then \boldsymbol{e} is a value or there exists an $\boldsymbol{e}^{\boldsymbol{\prime}}$ such that $e \rightarrow e^{\prime}$.

Proof: We first prove this lemma:
Lemma (Canonical Forms): If $\cdot \vdash \boldsymbol{v}: \boldsymbol{\tau}$, then:

- if $\boldsymbol{\tau}$ is int, then \boldsymbol{v} is some \boldsymbol{c}
- if $\boldsymbol{\tau}$ has the form $\tau_{1} \rightarrow \tau_{2}$ then \boldsymbol{v} has the form $\boldsymbol{\lambda} \boldsymbol{x} . \boldsymbol{e}$.

Proof: By inspection of the form of values and typing rules.
We now prove Progress by structural induction (syntax height) on e...

Progress continued

The structure of \boldsymbol{e} has one of these forms:

- \boldsymbol{x} - impossible because $\cdot \vdash \boldsymbol{e}: \boldsymbol{\tau}$.
- c - then e is a value
- $\boldsymbol{\lambda} \boldsymbol{x} . e^{\prime}$ - then e is a value
- $e_{1} e_{2}-$ By induction either e_{1} is some $\boldsymbol{v}_{\mathbf{1}}$ or can become some $\boldsymbol{e}_{1}^{\prime}$. If it becomes e_{1}^{\prime}, then $e_{1} e_{2} \rightarrow e_{1}^{\prime} e_{2}$. Else by induction either $\boldsymbol{e}_{\mathbf{2}}$ is some $\boldsymbol{v}_{\mathbf{2}}$ or can become some $\boldsymbol{e}_{\mathbf{2}}^{\prime}$. If to becomes $\boldsymbol{e}_{\mathbf{2}}^{\prime}$, then $\boldsymbol{v}_{\mathbf{1}} \boldsymbol{e}_{\mathbf{2}} \rightarrow \boldsymbol{v}_{\mathbf{1}} \boldsymbol{e}_{\mathbf{2}}^{\prime}$. Else \boldsymbol{e} is $\boldsymbol{v}_{\mathbf{1}} \boldsymbol{v}_{\mathbf{2}}$. Inverting the assumed typing derivation ensures $\cdot \vdash \boldsymbol{v}_{\mathbf{1}}: \boldsymbol{\tau}^{\prime} \rightarrow \boldsymbol{\tau}$ for some $\boldsymbol{\tau}^{\prime}$. So Canonical Forms ensures $\boldsymbol{v}_{\boldsymbol{1}}$ has the form $\boldsymbol{\lambda} \boldsymbol{x}$. $\boldsymbol{e}^{\boldsymbol{\prime}}$. So $\boldsymbol{v}_{1} \boldsymbol{v}_{2} \rightarrow \boldsymbol{e}^{\prime}\left[\boldsymbol{v}_{2} / \boldsymbol{x}\right]$.

Note: If we add + , we need the other part of Canonical Forms.

