CSE 505: Concepts of Programming Languages

Dan Grossman
Fall 2006
Lecture 9- More ST λ C Extensions; Notes on Termination

Outline

- Continue extending ST $\boldsymbol{\lambda} \mathrm{C}$ - data structures, recursion
- Discussion of "anonymous" types
- Consider termination informally
- Next time: Curry-Howard Isomorphism, Evaluation Contexts, Abstract Machines

Review

$e::=\lambda x . e|x| e e|c \quad v::=\lambda x . e| c$
$\tau::=\mathrm{int}|\tau \rightarrow \tau \quad \Gamma:=\cdot| \Gamma, x: \tau$
$\frac{e_{1} \rightarrow e_{1}^{\prime}}{(\lambda x . e) v \rightarrow e[v / x]} \quad \frac{e_{2} \rightarrow e_{2}^{\prime}}{e_{1} e_{2} \rightarrow e_{1}^{\prime} e_{2}} \quad \frac{v e_{2} \rightarrow v e_{2}^{\prime}}{l}$
$e\left[e^{\prime} / x\right]$: capture-avoiding substitution of e^{\prime} for free x in e

$$
\begin{array}{cc}
\overline{\Gamma \vdash c: \text { int }} \begin{array}{c}
\overline{\Gamma \vdash x: \Gamma(x)} \quad \frac{\Gamma, x: \tau_{1} \vdash e: \tau_{2}}{\Gamma \vdash \lambda x . e: \tau_{1} \rightarrow \tau_{2}} \\
\\
\frac{\Gamma \vdash e_{1}: \tau_{2} \rightarrow \tau_{1} \quad \Gamma \vdash e_{2}: \tau_{2}}{\Gamma \vdash e_{1} e_{2}: \tau_{1}}
\end{array}
\end{array}
$$

Preservation: If $\cdot \vdash \boldsymbol{e}: \boldsymbol{\tau}$ and $\boldsymbol{e} \rightarrow \boldsymbol{e}^{\prime}$, then $\cdot \vdash \boldsymbol{e}^{\prime}: \boldsymbol{\tau}$.
Progress: If $\cdot \vdash e: \tau$, then e is a value or $\exists e^{\prime}$ such that $e \rightarrow e^{\prime}$.

Pairs (CBV, left-right)

$$
\begin{aligned}
& e \quad::=\ldots|(e, e)| e .1 \mid e .2 \\
& v::=\ldots \mid(v, v) \\
& \tau \quad::=\ldots \mid \tau * \tau \\
& \frac{e_{1} \rightarrow e_{1}^{\prime}}{\left(e_{1}, e_{2}\right) \rightarrow\left(e_{1}^{\prime}, e_{2}\right)} \\
& e_{2} \rightarrow e_{2}^{\prime} \\
& \left(v_{1}, e_{2}\right) \rightarrow\left(v_{1}, e_{2}^{\prime}\right) \\
& \frac{e \rightarrow e^{\prime}}{e .1 \rightarrow e^{\prime} .1} \\
& \frac{e \rightarrow e^{\prime}}{e .2 \rightarrow e^{\prime} .2} \\
& \overline{\left(v_{1}, v_{2}\right) .1 \rightarrow v_{1}} \\
& \overline{\left(v_{1}, v_{2}\right) .2 \rightarrow v_{2}}
\end{aligned}
$$

Small-step can be a pain (more concise notation next lecture)

Pairs continued

$$
\begin{gathered}
\frac{\Gamma \vdash e_{1}: \tau_{1} \quad \Gamma \vdash e_{2}: \tau_{2}}{\Gamma \vdash\left(e_{1}, e_{2}\right): \tau_{1} * \tau_{2}} \\
\frac{\Gamma \vdash e: \tau_{1} * \tau_{2}}{\Gamma \vdash e .1: \tau_{1}}
\end{gathered}
$$

Canonical Forms: If $\cdot \vdash \boldsymbol{v}: \boldsymbol{\tau}_{1} * \boldsymbol{\tau}_{2}$, then \boldsymbol{v} has the form $\left(\boldsymbol{v}_{1}, \boldsymbol{v}_{2}\right)$.
Progress: New cases using C.F. are $\boldsymbol{v} .1$ and $\boldsymbol{v} .2$.
Preservation: For primitive reductions, inversion gives the result directly.

Records

Records seem like pairs with named fields

$$
\begin{aligned}
e & ::=\ldots\left|\left\{l_{1}=e_{1} ; \ldots ; l_{n}=e_{n}\right\}\right| e . l \\
\tau & ::=\ldots \mid\left\{l_{1}: \tau_{1} ; \ldots ; l_{n}: \tau_{n}\right\} \\
v & ::=\ldots \mid\left\{l_{1}=v_{1} ; \ldots ; l_{n}=v_{n}\right\}
\end{aligned}
$$

Fields do not $\boldsymbol{\alpha}$-convert.
Names might let us reorder fields, e.g.,
$\cdot \vdash\left\{l_{1}=42 ; l_{2}=\right.$ true $\}:\left\{l_{2}:\right.$ bool $; l_{1}:$ int $\}$.
Nothing wrong with this, but many languages disallow it. (Why?
Run-time efficiency and/or type inference)
(Caml has only named record types with disjoint fields.)
More on this when we study subtyping

Sums

What about ML-style datatypes:
type $t=A \mid B$ of int | C of int*t

1. Tagged variants (i.e., discriminated unions)
2. Recursive types
3. Type constructors (e.g., type 'a mylist = ...)
4. Names the type

Today we'll model just (1) with (anonymous) sum types...

Sum syntax and overview

$$
\begin{aligned}
e & ::=\ldots|\mathrm{A}(e)| \mathrm{B}(e) \mid \text { match } e \text { with } \mathrm{Ax} . e \mid \mathrm{B} x . e \\
v & ::=\ldots|\mathrm{A}(v)| \mathrm{B}(v) \\
\tau & ::=\ldots \mid \tau_{1}+\tau_{2}
\end{aligned}
$$

- Only two constructors: A and B
- All values of any sum type built from these constructors
- So $\mathbf{A}(e)$ can have any sum type allowed by e 's type
- No need to declare sum types in advance
- Like functions, will "guess the type" in our rules

Sum semantics

$$
\begin{gathered}
\text { match } \mathrm{A}(v) \text { with } \mathrm{A} x . e_{1} \mid \mathrm{B} y . e_{2} \rightarrow e_{1}[v / x] \\
\hline \text { match } \mathrm{B}(v) \text { with } \mathrm{A} x . e_{1} \mid \mathrm{B} y . e_{2} \rightarrow e_{2}[v / y] \\
\frac{e \rightarrow e^{\prime}}{\mathrm{A}(e) \rightarrow \mathrm{A}\left(e^{\prime}\right)} \quad \frac{e \rightarrow e^{\prime}}{\mathrm{B}(e) \rightarrow \mathrm{B}\left(e^{\prime}\right)} \\
e \rightarrow e^{\prime}
\end{gathered}
$$

match e with $\mathrm{A} x . e_{1} \mid \mathrm{B} y . e_{2} \rightarrow$ match e^{\prime} with $\mathrm{A} x . e_{1} \mid \mathrm{B} y . e_{2}$ match has binding occurrences, just like pattern-matching.
(Definition of substitution must avoid capture, just like functions.)

What is going on

Feel free to think about tagged values in your head:

- A tagged value is a pair of a tag (A or B, or 0 or 1 if you prefer) and the value
- A match checks the tag and binds the variable to the value

This much is just like Caml in lecture 1 and related to homework 2.
Sums in other guises:

- C: use an enum and a union
- More space than ML, but supports in-place mutation
- OOP: use an abstract superclass and subclasses

Sum Type-checking

Inference version (not trivial to infer; can require annotations)

$$
\begin{array}{cc}
\frac{\Gamma \vdash e: \tau_{1}}{\Gamma \vdash \mathrm{~A}(e): \tau_{1}+\tau_{2}} & \frac{\Gamma \vdash e: \tau_{2}}{\Gamma \vdash \mathrm{~B}(e): \tau_{1}+\tau_{2}} \\
\frac{\Gamma \vdash e: \tau_{1}+\tau_{2} \quad \Gamma, x: \tau_{1} \vdash e_{1}: \tau \quad \Gamma, y: \tau_{2} \vdash e_{2}: \tau}{\Gamma \vdash \text { match } e \text { with Ax. } e_{1} \mid \mathrm{B} y . e_{2}: \tau}
\end{array}
$$

Key ideas:

- For constructor-uses, "other side can be anything"
- For match, both sides need same type since don't know which branch will be taken, just like an if.

Can encode booleans with sums. E.g., bool $=$ int + int, true $=A(0)$, false $=B(0)$.

Type Safety

Canonical Forms: If $\cdot \vdash \boldsymbol{v}: \boldsymbol{\tau}_{\mathbf{1}}+\boldsymbol{\tau}_{\mathbf{2}}$, then either \boldsymbol{v} has the form $\mathbf{A}\left(\boldsymbol{v}_{\mathbf{1}}\right)$ and $\cdot \vdash \boldsymbol{v}_{\mathbf{1}}: \boldsymbol{\tau}_{\mathbf{1}}$ or the form $\mathbf{A}\left(\boldsymbol{v}_{\mathbf{1}}\right)$ and $\cdot \vdash \boldsymbol{v}_{\mathbf{1}}: \boldsymbol{\tau}_{\mathbf{2}}$.

The rest is induction and substitution...

Pairs vs. sums

- You need both in your language
- With only pairs, you clumsily use dummy values, waste space, and rely on unchecked tagging conventions
- Example: replace int $+($ int \rightarrow int) with int $*($ int $*($ int \rightarrow int $))$
- "logical duals" (as we'll see soon and the typing rules show)
- To make a $\tau_{1} * \tau_{2}$ you need a τ_{1} and a τ_{2}.
- To make a $\tau_{1}+\tau_{2}$ you need a τ_{1} or a τ_{2}.
- Given a $\tau_{1} * \tau_{2}$, you can get a τ_{1} or a τ_{2} (or both; your "choice").
- Given a $\tau_{1}+\tau_{2}$, you must be prepared for either a $\boldsymbol{\tau}_{1}$ or $\boldsymbol{\tau}_{\mathbf{2}}$ (the value's "choice").

Base Types, in general

What about floats, strings, enums, . . ? Could add them all or do something more general...

Parameterize our language/semantics by a collection of base types $\left(b_{1}, \ldots, b_{n}\right)$ and primitives $\left(c_{1}: \tau_{1}, \ldots, c_{n}: \tau_{n}\right)$.

Examples: concat : string \rightarrow string \rightarrow string tolnt : float \rightarrow int
"hello" : string
For each primitive, assume if applied to values of the right types it produces a value of the right type.

Together the types and assumed steps tell us how to type-check and evaluate $\boldsymbol{c}_{\boldsymbol{i}} \boldsymbol{v}_{\mathbf{1}} \ldots \boldsymbol{v}_{\boldsymbol{n}}$ where $\boldsymbol{c}_{\boldsymbol{i}}$ is a primitive.

We can prove soundness once and for all given the assumptions.

Recursion

We won't prove it, but every extension so far preserves termination. A Turing-complete language needs some sort of loop. What we add won't be encodable in ST $\boldsymbol{\lambda}$ C.
E.g., let rec $\mathrm{f} x=e$

Do typed recursive functions need to be bound to variables or can they be anonymous?

In Caml, you need variables, but it's unnecessary:

$$
e::=\ldots \mid \text { fix } e
$$

$$
\frac{e \rightarrow e^{\prime}}{\operatorname{fix} e \rightarrow \mathrm{fix} e^{\prime}}
$$

$$
\text { fix } \lambda x . e \rightarrow e[\mathrm{fix} \lambda x . e / x]
$$

Using fix

It works just like let rec, e.g.,

$$
\text { fix } \lambda f . \lambda n \text {. if } n<1 \text { then } 1 \text { else } n *(f(n-1))
$$

Note: You can use it for mutual recursion too.

Pseudo-math digression

Why is it called fix? In math, a fixed-point of a function \boldsymbol{g} is an \boldsymbol{x} such that $\boldsymbol{g}(\boldsymbol{x})=\boldsymbol{x}$.

Let \boldsymbol{g} be $\boldsymbol{\lambda} \boldsymbol{f}$. $\boldsymbol{\lambda} \boldsymbol{n}$. if $\boldsymbol{n}<1$ then 1 else $n *(f(n-1))$.
If \boldsymbol{g} is applied to a function that computes factorial for arguments
$\leq \boldsymbol{m}$, then \boldsymbol{g} returns a function that computes factorial for arguments
$\leq m+1$.
Now \boldsymbol{g} has type (int \longrightarrow int $) \longrightarrow$ (int \longrightarrow int). The fix-point of \boldsymbol{g} is the function that computes factorial for all natural numbers.

And fix \boldsymbol{g} is equivalent to that function. That is, fix \boldsymbol{g} is the fix-point of \boldsymbol{g}.

Typing fix

$$
\frac{\Gamma \vdash e: \tau \rightarrow \tau}{\Gamma \vdash \operatorname{fix} e: \tau}
$$

Math explanation: If \boldsymbol{e} is a function from τ to τ, then fix e, the fixed-point of e, is some τ with the fixed-point property. So it's something with type τ.

Operational explanation: fix $\boldsymbol{\lambda} \boldsymbol{x} . \boldsymbol{e}^{\prime}$ becomes $\boldsymbol{e}^{\prime}\left[\mathrm{fix} \boldsymbol{\lambda} \boldsymbol{x} . \boldsymbol{e}^{\prime} / \boldsymbol{x}\right]$. The substitution means \boldsymbol{x} and fix $\boldsymbol{\lambda} \boldsymbol{x} . \boldsymbol{e}^{\prime}$ better have the same type. And the result means \boldsymbol{e}^{\prime} and fix $\boldsymbol{\lambda} \boldsymbol{x}$. \boldsymbol{e}^{\prime} better have the same type.

Note: Proving soundness is straightforward!

General approach

We added lets, booleans, pairs, records, sums, and fix. Let was syntactic sugar. Fix made us Turing-complete by "baking in" self-application. The others added types.

Whenever we add a new form of type $\boldsymbol{\tau}$ there are:

- Introduction forms (ways to make values of type $\boldsymbol{\tau}$)
- Elimination forms (ways to use values of type $\boldsymbol{\tau}$)

What are these forms for functions? Pairs? Sums?
When you add a new type, think "what are the intro and elim forms"?

Anonymity

We added many forms of types, all unnamed a.k.a. structural.
Many real PLs have (all or mostly) named types:

- Java, C, C ++ : all record types (or similar) have names (omitting them just means compiler makes up a name)
- Caml sum-types have names.

A never-ending debate:

- Structual types allow more code reuse, which is good.
- Named types allow less code reuse, which is good.
- Structural types allow generic type-based code, which is good.
- Named types allow type-based code to distinguish names, which is good.

The theory is often easier and simpler with structural types.

Termination

Surprising fact: If $\cdot \vdash \boldsymbol{e}: \boldsymbol{\tau}$ in the ST $\boldsymbol{\lambda C}$ with all our additions except fix, then there exists a \boldsymbol{v} such that $\boldsymbol{e} \rightarrow^{*} \boldsymbol{v}$.

That is, all programs terminate.
So termination is trivially decidable (the constant "yes" function), so our language is not Turing-complete.

Proof is in the book. It requires cleverness because the size of expressions does not "go down" as programs run.

Non-proof: Recursion in $\boldsymbol{\lambda}$ calculus requires some sort of self-application. Easy fact: For all $\boldsymbol{\Gamma}, \boldsymbol{x}$, and $\boldsymbol{\tau}$, we cannot derive $\boldsymbol{\Gamma} \vdash \boldsymbol{x} \boldsymbol{x}: \boldsymbol{\tau}$.

