
'

&

$

%

CSE 505:
Concepts of Programming Languages

Dan Grossman

Fall 2007

Lecture 1— Course Introduction

Dan Grossman CSE505 Fall 2007, Lecture 1 1



'

&

$

%

Today

• Administrative stuff

• Course motivation and goals

– A Java example

• Course overview

• Course pitfalls

• Caml tutorial, part 1

– Advice: play with it between now and Tuesday

(e.g., hw1, problem 1)

Dan Grossman CSE505 Fall 2007, Lecture 1 2



'

&

$

%

Course facts

• Dan Grossman, CSE556, djg

• TA: Matthew Kehrt, CSE602, mkehrt

• Office hours: (Tuesday 2-3 plus appt plus stop by...)

• Web page for mailing list, “homework 0”, and homework 1 (fairly

carefully pipelined with first lectures; do not wait to do it all)

Dan Grossman CSE505 Fall 2007, Lecture 1 3



'

&

$

%

Coursework

• 5 homeworks

– “paper/pencil” (LATEXrecommended?)

– programming (Caml required)

– where you’ll probably learn the most

– do challenge problems if you want but not technically “extra”

• 2 exams

– “my” reference sheet plus “your” reference sheet

• Lecture notes usually available online

• Textbook: mostly for “middle few weeks of course”

– won’t follow it much

– possibly enough copies floating around the department

Dan Grossman CSE505 Fall 2007, Lecture 1 4



'

&

$

%

Academic integrity

• If you violate the rules, I will enforce the maximum penalty allowed

– and I’ll be personally offended

– far more important than your grade

• Rough guidelines

– can sketch idea together

– cannot look at code solutions

• Ask questions and always describe what you did

• Please do work together and learn from each other...

Dan Grossman CSE505 Fall 2007, Lecture 1 5



'

&

$

%

Graduate-School Success

• Success in 505 (a graduate course) comes from:

– Learning and enjoying the material

– Challenging yourself

– Managing the “big picture” and the details

• Success has nothing to do with:

– Scrounging for grading points

– “Doing better than the person next to you”

• The person next to you is your colleague for the next 5–50 years.

Dan Grossman CSE505 Fall 2007, Lecture 1 6



'

&

$

%

Programming-language concepts

Focus on semantic concepts:

What do programs mean (do/compute/produce/represent)?

How to define a language precisely?

English is a poor metalanguage

Aspects of meaning:

equivalence, termination, determinism, type, . . .

Dan Grossman CSE505 Fall 2007, Lecture 1 7



'

&

$

%

Does it matter?

Novices write programs that “work as expected,” so why be

rigorous/precise/pedantic?

• The world runs on software

Web-servers and nuclear reactors don’t “seem to work”

• You buy language implementations—what do they do?

• Software is buggy—semantics assigns blame

• Never say “nobody would write that” (surprising interactions)

Also: Rigor is a hallmark of quality research

Dan Grossman CSE505 Fall 2007, Lecture 1 8



'

&

$

%

Java example

class A { int f() { return 0; } }

class B {

int g(A x) {

try { return x.f(); }

finally { s }

}

}

For all s, is it equivalent for g’s body to be “return 0;”?

Motivation: code optimizer, code maintainer, ...

Dan Grossman CSE505 Fall 2007, Lecture 1 9



'

&

$

%

Punch-line

Not equivalent:

• Extend A

• x could be null

• s could modify global state, diverge, throw, ...

• s could return

A silly example, but:

• PL makes you a good adversary, programmer

• PL gives you the tools to argue equivalence (hard!)

Dan Grossman CSE505 Fall 2007, Lecture 1 10



'

&

$

%

Course goals

1. Learn intellectual tools for describing program behavior

2. Investigate concepts essential to most languages

• mutation and iteration

• scope and functions

• objects

• threads

3. Write programs to “connect theory with the code”

4. Sketch applicability to “real” languages

5. Provide background for current PL research

(less important for most of you)

Dan Grossman CSE505 Fall 2007, Lecture 1 11



'

&

$

%

Course nongoals

• Study syntax; learn to specify grammars, parsers

– Transforming 3 + 4 or (+ 3 4) or +(3, 4) to

“application of plus operator to constants three and four”

– stop me when I get too sloppy

• Learn specific programming languages (but some ML)

• Denotational and axiomatic semantics

– Would include them if I had 25 weeks

– Will explain what they are later

Dan Grossman CSE505 Fall 2007, Lecture 1 12



'

&

$

%

What we will do

• Define really small languages

– Usually Turing complete

– Always unsuitable for real programming

• Study them rigorously via operational models

• Extend them to realistic languages less rigorously

• Digress for cool results (this is fun!?!)

• Do programming assignments in Caml...

Dan Grossman CSE505 Fall 2007, Lecture 1 13



'

&

$

%

Caml

• Caml is an awesome, high-level language

• We will use a tiny core subset of it that is well-suited for

manipulating recursive data structures (like programs!)

• You have to learn it outside of class (start today!)

– But feel free to ask me for advice

– Even after the course

• Resources on course webpage

• I am not a language zealot, but knowing ML makes you a better

programmer

Dan Grossman CSE505 Fall 2007, Lecture 1 14



'

&

$

%

Pitfalls

How to hate this course and get the wrong idea:

• Forget that we made simple models to focus on essentials

• Don’t quite get inductive definitions and proofs

• Don’t try other ways to model/prove the idea

– You’ll probably be wrong

– And therefore you’ll learn more

• Think PL people focus on only obvious facts (need to start there)

Dan Grossman CSE505 Fall 2007, Lecture 1 15



'

&

$

%

Final Metacomment

Acknowledging others is crucial...

This course will draw heavily on:

• Previous versions of the course (Borning, Chambers)

• Similar courses elsewhere (Felleisen, Flatt, Harper, Morrisett,

Myers, Pierce, Rugina, Walker, ...)

• Texts (Pierce, Wynskel, ...)

This is a course, not my work.

Dan Grossman CSE505 Fall 2007, Lecture 1 16



'

&

$

%

Caml tutorial

• “Let go of Java/C”

• If you have seen SML, Haskell, Scheme, Lisp, etc. this will feel

more familiar

• Give us some small code snippets so we have a common

experience we can talk about.

• Also see me use the tools.

• A note later on Seminal.

Dan Grossman CSE505 Fall 2007, Lecture 1 17



'

&

$

%

Seminal

• This is optional, but Ben Lerner and I would be ever-so grateful

for your informed feedback.

• An additional, complementary style of type-error message.

• No other change to compiler (parsing, code-generation, etc.)

• See “Running Caml locally” on the course website.

Dan Grossman CSE505 Fall 2007, Lecture 1 18


