
'

&

$

%

CSE 505: Concepts of Programming Languages

Dan Grossman

Fall 2007

Lecture 10— Curry-Howard Isomorphism, Evaluation Contexts, Stacks,

Abstract Machines

Dan Grossman CSE505 Fall 2007, Lecture 10 1

'

&

$

%

Outline
Two totally different topics:

• Curry-Howard Isomorphism

– Types are propositions

– Programs are proofs

• Equivalent ways to express evaluation of λ-calculus

– Evaluation contexts

– Explicit stacks

– Closures instead of substitution

A series of equivalent implementations from our operational

semantics to a fairly efficient “low-level” implementation!

Note: lec10.ml contains much of this second topic

Evaluation contexts / stacks also let us talk about continuations

Dan Grossman CSE505 Fall 2007, Lecture 10 2

'

&

$

%

Curry-Howard Isomorphism

What we did:

• Define a programming language

• Define a type system to rule out programs we don’t want

What logicians do:

• Define a logic (a way to state propositions)

– Example: Propositional logic p ::= b | p ∧ p | p ∨ p | p → p

• Define a proof system (a way to prove propositions)

But it turns out we did that too!

Slogans:

• “Propositions are Types”

• “Proofs are Programs”

Dan Grossman CSE505 Fall 2007, Lecture 10 3

'

&

$

%

A slight variant

Let’s take the explicitly typed STλC with base types b1, b2, . . .,

no constants, pairs, and sums

e ::= x | λx. e | e e

| (e, e) | e.1 | e.2

| A(e) | B(e) | match e with Ax. e | Bx. e

τ ::= b | τ → τ | τ ∗ τ | τ + τ

Even without constants, plenty of terms type-check with Γ = ·...

Dan Grossman CSE505 Fall 2007, Lecture 10 4

'

&

$

%

Example programs

λx:b17. x

has type

b17 → b17

Dan Grossman CSE505 Fall 2007, Lecture 10 5

'

&

$

%

Example programs

λx:b1. λf :b1 → b2. f x

has type

b1 → (b1 → b2) → b2

Dan Grossman CSE505 Fall 2007, Lecture 10 6

'

&

$

%

Example programs

λx:b1 → b2 → b3. λy:b2. λz:b1. x z y

has type

(b1 → b2 → b3) → b2 → b1 → b3

Dan Grossman CSE505 Fall 2007, Lecture 10 7

'

&

$

%

Example programs

λx:b1. (A(x), A(x))

has type

b1 → ((b1 + b7) ∗ (b1 + b4))

Dan Grossman CSE505 Fall 2007, Lecture 10 8

'

&

$

%

Example programs

λf :b1 → b3. λg:b2 → b3. λz:b1 + b2.

(match z with Ax. f x | Bx. g x)

has type

(b1 → b3) → (b2 → b3) → (b1 + b2) → b3

Dan Grossman CSE505 Fall 2007, Lecture 10 9

'

&

$

%

Example programs

λx:b1 ∗ b2. λy:b3. ((y, x.1), x.2)

has type

(b1 ∗ b2) → b3 → ((b3 ∗ b1) ∗ b2)

Dan Grossman CSE505 Fall 2007, Lecture 10 10

'

&

$

%

Empty and Nonempty Types

So we have seen several “nonempty” types (closed terms of that type):

b17 → b17

b1 → (b1 → b2) → b2

(b1 → b2 → b3) → b2 → b1 → b3

b1 → ((b1 + b7) ∗ (b1 + b4))

(b1 → b3) → (b2 → b3) → (b1 + b2) → b3

(b1 ∗ b2) → b3 → ((b3 ∗ b1) ∗ b2)

But there are also lots of “empty” types (no closed term of that type):

b1 b1 → b2 b1 + (b1 → b2) b1 → (b2 → b1) → b2

And “I” have a “secret” way of knowing whether a type will be empty;

let me show you propositional logic...

Dan Grossman CSE505 Fall 2007, Lecture 10 11

'

&

$

%

Propositional Logic
With → for implies, + for inclusive-or and ∗ for and:

p ::= b | p → p | p ∗ p | p + p

Γ ::= · | Γ, p

Γ ` p

Γ ` p1 Γ ` p2

Γ ` p1 ∗ p2

Γ ` p1 ∗ p2

Γ ` p1

Γ ` p1 ∗ p2

Γ ` p2

Γ ` p1

Γ ` p1 + p2

Γ ` p2

Γ ` p1 + p2

Γ ` p1 + p2 Γ, p1 ` p3 Γ, p2 ` p3

Γ ` p3

p ∈ Γ

Γ ` p

Γ, p1 ` p2

Γ ` p1 → p2

Γ ` p1 → p2 Γ ` p1

Γ ` p2

Dan Grossman CSE505 Fall 2007, Lecture 10 12

'

&

$

%

Guess what!!!!
That’s exactly our type system, erasing terms and changing every τ to a p

Γ ` e : τ

Γ ` e1 : τ1 Γ ` e2 : τ2

Γ ` (e1, e2) : τ1 ∗ τ2

Γ ` e : τ1 ∗ τ2

Γ ` e.1 : τ1

Γ ` e : τ1 ∗ τ2

Γ ` e.2 : τ2

Γ ` e : τ1

Γ ` A(e) : τ1 + τ2

Γ ` e : τ2

Γ ` B(e) : τ1 + τ2

Γ ` e : τ1 + τ2 Γ, x:τ1 ` e1 : τ Γ, y:τ2 ` e2 : τ

Γ ` match e with Ax. e1 | By. e2 : τ

Γ(x) = τ

Γ ` x : τ

Γ, x : τ1 ` e : τ2

Γ ` λx. e : τ1 → τ2

Γ ` e1 : τ2 → τ1 Γ ` e2 : τ2

Γ ` e1 e2 : τ1

Dan Grossman CSE505 Fall 2007, Lecture 10 13

'

&

$

%

Curry-Howard Isomorphism

• Given a closed term that type-checks, we can take the typing

derivation, erase the terms, and have a propositional-logic proof.

• Given a propositional-logic proof, there exists a closed term with

that type.

• A term that type-checks is a proof — it tells you exactly how to

derive the logic formula corresponding to its type.

• Intuitionistic (hold that thought) propositional logic and

simply-typed lambda-calculus with pairs and sums are the same

thing.

– Computation and logic are deeply connected

– λ is no more or less made up than implication

• Let’s revisit our examples under the logical interpretation...

Dan Grossman CSE505 Fall 2007, Lecture 10 14

'

&

$

%

Example proofs

λx:b17. x

is a proof that

b17 → b17

Dan Grossman CSE505 Fall 2007, Lecture 10 15

'

&

$

%

Example proofs

λx:b1. λf :b1 → b2. f x

is a proof that

b1 → (b1 → b2) → b2

Dan Grossman CSE505 Fall 2007, Lecture 10 16

'

&

$

%

Example proofs

λx:b1 → b2 → b3. λy:b2. λz:b1. x z y

is a proof that

(b1 → b2 → b3) → b2 → b1 → b3

Dan Grossman CSE505 Fall 2007, Lecture 10 17

'

&

$

%

Example proofs

λx:b1. (A(x), A(x))

is a proof that

b1 → ((b1 + b7) ∗ (b1 + b4))

Dan Grossman CSE505 Fall 2007, Lecture 10 18

'

&

$

%

Example proofs

λf :b1 → b3. λg:b2 → b3. λz:b1 + b2.

(match z with Ax. f x | Bx. g x)

is a proof that

(b1 → b3) → (b2 → b3) → (b1 + b2) → b3

Dan Grossman CSE505 Fall 2007, Lecture 10 19

'

&

$

%

Example proofs

λx:b1 ∗ b2. λy:b3. ((y, x.1), x.2)

is a proof that

(b1 ∗ b2) → b3 → ((b3 ∗ b1) ∗ b2)

Dan Grossman CSE505 Fall 2007, Lecture 10 20

'

&

$

%

Why care?

Because:

• This is just fascinating (glad I’m not a dog).

• For decades these were separate fields.

• Thinking “the other way” can help you know what’s

possible/impossible

• Can form the basis for automated theorem provers

• Type systems should not be ad hoc piles of rules!

So, every typed λ-calculus is a proof system for a logic...

Is STλC with pairs and sums a complete proof system for

propositional logic? Almost...

Dan Grossman CSE505 Fall 2007, Lecture 10 21

'

&

$

%

Classical vs. Constructive

Classical propositional logic has the “law of the excluded middle”:

Γ ` p1 + (p1 → p2)

(Think “p or not p” – also equivalent to double-negation.)

STλC has no proof for this; there is no expression with this type.

Logics without this rule are called constructive. They’re useful because

proofs “know how the world is” and “are executable” and “produce

examples”.

You can still “branch on possibilities”:

((p1 + (p1 → p2)) ∗ (p1 → p3) ∗ ((p1 → p2) → p3)) → p3

Dan Grossman CSE505 Fall 2007, Lecture 10 22

'

&

$

%

Example classical proof

Theorem: I can always wake up at 9AM and get to campus by 10AM.

Proof: If it is a weekday, I can take a bus that leaves at 9:30AM. If it

is not a weekday, traffic is light and I can drive. Since it is a weekday

or not a weekday, I can get to campus by 10AM.

Problem: If you wake up and don’t know if it’s a weekday, this proof

does not let you construct a plan to get to campus by 10AM.

In constructive logic, that never happens. You can always extract a

program from a proof that “does” what you proved “could be”.

You could not prove the theorem above, but you could prove, “If I

know whether it is a weekday or not, then ...”

Dan Grossman CSE505 Fall 2007, Lecture 10 23

'

&

$

%

Fix

A “non-terminating proof” is no proof at all.

Remember the typing rule for fix:

Γ ` e : τ → τ

Γ ` fix e : τ

That let’s us prove anything! For example: fix λx:b3. x has type b3.

So the “logic” is inconsistent (and therefore worthless).

Related: In ML, a value of type ’a never terminates normally (raises

an exception, infinite loop, etc.)

let rec f x = f x

let z = f 0

Dan Grossman CSE505 Fall 2007, Lecture 10 24

'

&

$

%

Last word on Curry-Howard

It’s not just STλC and intuitionistic propositional logic.

Every logic has a correspondng typed λ calculus (and no consistent

logic has something like fix).

• Example: When we add universal types (“generics”) in a few

lectures, that corresponds to adding universal quantification.

Dan Grossman CSE505 Fall 2007, Lecture 10 25

'

&

$

%

Toward Evaluation Contexts
(untyped) λ-calculus with extensions has lots of “boring inductive rules”:

e1 → e′
1

e1 e2 → e′
1 e2

e2 → e′
2

v e2 → v e′
2

e → e′

e.1 → e′.1

e → e′

e.2 → e′.2

e1 → e′
1

(e1, e2) → (e′
1, e2)

e2 → e′
2

(v1, e2) → (v1, e′
2)

e → e′

A(e) → A(e′)

e → e′

B(e) → B(e′)

e → e′

match e with Ax. e1 | By. e2 → match e′ with Ax. e1 | By. e2

and some “interesting do-work rules”:

(λx. e) v → e[v/x] (v1, v2).1 → v1 (v1, v2).2 → v2

match A(v) with Ax. e1 | By. e2 → e1[v/x]

match B(v) with Ay. e1 | Bx. e2 → e2[v/x]

Dan Grossman CSE505 Fall 2007, Lecture 10 26

'

&

$

%

Evaluation Contexts
We can define evaluation contexts, which are expressions with one hole

where “interesting work” may occur:

E ::= [·] | E e | v E | (E, e) | (v, E) | E.1 | E.2

| A(E) | B(E) | (match E with Ax. e1 | By. e2)

Define “filling the hole” E[e] in the obvious way (see ML code).

Semantics is now just “interesting work” rules (written e
p→ e′) and:

e
p→ e′

E[e] → E[e′]

So far, just concise notation pushing the work to decomposition: Given

e, find an E, ea, e′
a such that e = E[ea] and ea

p→ e′
a.

Theorem (Unique Decomposition): If · ` e : τ , then e is a value or

there is exactly one decomposition of e.

Dan Grossman CSE505 Fall 2007, Lecture 10 27

'

&

$

%

Second Implementation

So far two interpreters:

• Old-fashioned small-step: derive a step, and iterate

• Evaluation-context small-step: decompose, fill the whole with the

result of the primitive-step, and iterate

Decomposing “all over” each time is awfully redundant (as is the

old-fashioned build a full-derivation of each step).

We can “incrementally maintain the decomposition” if we represent it

conveniently. Instead of nested contexts, we can keep a list:

S ::= · | Lapp(e)::S | Rapp(v)::S | Lpair(e)::S | ...

See the code: This representation is isomorphic (there’s a bijection) to

evaluation contexts.

Dan Grossman CSE505 Fall 2007, Lecture 10 28

'

&

$

%

Stack-based machine

This new form of evaluation-context is a stack.

Since we don’t re-decompose at each step, our “program state” is a

stack and an expression.

At each step, the stack may grow (to recur on a nested expression) or

shrink (to do a primitive step)

Now that we have an explicit stack, we are not using the

meta-language’s call-stack (the interpreter is just a while-loop).

But substitution is still using the meta-language’s call-stack.

Dan Grossman CSE505 Fall 2007, Lecture 10 29

'

&

$

%

Stack-based with environments

Our last step uses environments, much like you will in homework 3.

Now everything in our interpreter is tail-recursive (beyond the explicit

representation of environments and stacks, we need only O(1) space).

You could implement this last interpreter in assembly without using a

call instruction.

Dan Grossman CSE505 Fall 2007, Lecture 10 30

'

&

$

%

Conclusions
Proving each interpreter version equivalent to the next is tractable.

In our last version, every primitive step is O(1) time and space except

variable lookup (but that’s easily fixed in a compiler).

Perhaps more interestingly, evaluation contexts “give us a handle” on

the “surrounding computation”, which will let us do funky things like

make “stacks” (called continuations) first-class in the language.

• “get current continuation; bind it to a variable”

• “replace current continuation with saved one”

e ::= . . . | letcc x. e | throw e e | cont E

v ::= . . . | cont E

E ::= . . . | throw E e | throw v E

E[letcc x. e] → E[e[cont E/x]] E[throw (cont E′) v] → E′[v]

Dan Grossman CSE505 Fall 2007, Lecture 10 31

