4 N

CSE 505: Concepts of Programming Languages

Dan Grossman
Fall 2007
Lecture 10— Curry-Howard Isomorphism, Evaluation Contexts, Stacks,
Abstract Machines

- /

Dan Grossman CSE505 Fall 2007, Lecture 10 1

/Outline

Two totally different topics:

e Curry-Howard Isomorphism
— Types are propositions

— Programs are proofs

e Equivalent ways to express evaluation of A-calculus
— Evaluation contexts
— Explicit stacks
— Closures instead of substitution

A series of equivalent implementations from our operational
semantics to a fairly efficient “low-level” implementation!

Note: 1ec10.ml contains much of this second topic

\\Evaluation contexts / stacks also let us talk about continuations

Dan Grossman CSE505 Fall 2007, Lecture 10 2

/Curry—Howard Isomorphism \
What we did:

e Define a programming language
e Define a type system to rule out programs we don't want
What logicians do:
e Define a logic (a way to state propositions)
— Example: Propositional logicp ::=b |pAp|pVDp|p—p
e Define a proof system (a way to prove propositions)
But it turns out we did that too!
Slogans:

e “Propositions are Types”

\\o “Proofs are Programs” /

Dan Grossman CSE505 Fall 2007, Lecture 10 3

/A slight variant \

Let's take the explicitly typed STAC with base types b1, ba, .. .,
no constants, pairs, and sums

e = x|Ax.e|ee
| (e,e) | el]| e.2
| A(e) | B(e) | match e with Az. e | Bx. e

T u= b|lTtHoT|T*xT|T+T

Even without constants, plenty of terms type-check with I' = -...

- /

Dan Grossman CSE505 Fall 2007, Lecture 10 4

/Exa mple programs

Ax:bi7. @

has type

bi7 — b7

-

Dan Grossman CSE505 Fall 2007, Lecture 10

/Exa mple programs

Ax:bi. Af:by — bsy. f x

has type

bl — (bl —>b2) —>b2

-

Dan Grossman

CSE505 Fall 2007, Lecture 10

/Exa mple programs

Ax:by — by — bz. A\y:bs. Az:b1.x 2z y

has type

(b1—>b2—>b3)—>b2—>b1—>b3

-

Dan Grossman CSE505 Fall 2007, Lecture 10

/Exa mple programs

Axz:by. (A(x),A(x))

has type

by — ((b1 + br) * (b1 + ba))

-

Dan Grossman

CSE505 Fall 2007, Lecture 10

/Exa mple programs

-

)\f:bl — b3.)\g:bz — b3.)\thl + bz.
(match z with Az. f = | Bx. g x)

has type

(br — b3) — (b2 — b3) — (b1 +b2) — b3

Dan Grossman CSE505 Fall 2007, Lecture 10

/Exa mple programs

Ax:by * ba. Ay:bs. ((y,x.1),x.2)

has type

(bl %k bz) — b3 — ((b3 * bl) % bz)

-

Dan Grossman CSE505 Fall 2007, Lecture 10

10

/Empty and Nonempty Types \

So we have seen several “nonempty” types (closed terms of that type):
bi7 — bir

by — (b1 — b2) — b2

(by — by — b3z) — ba — by — bs

by — ((byr + b7) * (by + by))

(by — b3) — (b2 — b3) — (b1 + b2) — b3

(b1 * bg) — bg — ((bs * by) * bs)

But there are also lots of “empty” types (no closed term of that type):
b1 b1 — b2 b1 + (b1 — b2) by — (b2 — b1) — b2

And “I" have a “secret” way of knowing whether a type will be empty;

\Et me show you propositional logic... /

Dan Grossman CSE505 Fall 2007, Lecture 10 11

/Propositional Logic \

With — for implies, + for inclusive-or and * for and:

p == b|lp—p|pxp|p+Dp
r «= .|IL,p

I'-p

I' - p1 I' - p2 I' - p1 * p2 I' - p1 % p2
' - p1 * p2 I' - p1 I' - p2

F|—p1 Fl—pz F|_p1—|—p2 F,p1|_p3 F,p2|—p3
I'Ep1+p2 TI'Fp1+p2 I' - ps

pel I',p1 F po I' - p1 — p2 I' - py

\\ 'p I' - p1 — p2 I' - p2 /

Dan Grossman CSE505 Fall 2007, Lecture 10 12

/Guess what!!!] \

That's exactly our type system, erasing terms and changing every 7 to a p
I'Fe:T

I'Fe1:m™m T'Fex:Ts I'e:T™ %10 'e:m %10
'+ (e1,€e2) : 71 % T2 '+el:m I'+e.2: 7
I'Fe:m I'Fe: ™
' A(e): T+ 72 I'-B(e): 11+ 72

'Fe:mm4+m= IieemmFei:7™ yyimeFe2: 7

I' - match e with Axz. e; | By. ez : T

I'z) =1 I'z:m1Fe: T I'Fei:m — 711 T'kFez:m

'Fxz:7 TkHXe.e: 11 — T2 I'Feiex:m

- /

Dan Grossman CSE505 Fall 2007, Lecture 10 13

/Curry—Howard Isomorphism \

Given a closed term that type-checks, we can take the typing
derivation, erase the terms, and have a propositional-logic proof.

Given a propositional-logic proof, there exists a closed term with
that type.
A term that type-checks is a proof — it tells you exactly how to

derive the logic formula corresponding to its type.

Intuitionistic (hold that thought) propositional logic and
simply-typed lambda-calculus with pairs and sums are the same
thing.

— Computation and logic are deeply connected

— A Is no more or less made up than implication

Let's revisit our examples under the logical interpretation... /

Dan Grossman CSE505 Fall 2007, Lecture 10 14

/Example proofs

-

Ax:bi7. @

Is a proof that

bi7 — b7

Dan Grossman

CSE505 Fall 2007, Lecture 10

15

/Example proofs

-

Ax:bi. Af:by — bsy. f x

Is a proof that

bl — (bl —>b2) —>b2

Dan Grossman

CSE505 Fall 2007, Lecture 10

16

/Example proofs

Ax:by — by — bz. A\y:bs. Az:b1.x 2z y

Is a proof that

(b1—>b2—>b3)—>b2—>b1—>b3

-

Dan Grossman CSE505 Fall 2007, Lecture 10

17

/Example proofs

Axz:by. (A(x),A(x))

Is a proof that

by — ((b1 + br) * (b1 + ba))

-

Dan Grossman

CSE505 Fall 2007, Lecture 10

18

/Example proofs

)\f:bl — b3.)\g:bz — b3.)\thl + bz.
(match z with Az. f = | Bx. g x)

Is a proof that

(br — b3) — (b2 — b3) — (b1 +b2) — b3

-

Dan Grossman CSE505 Fall 2007, Lecture 10

19

/Example proofs

Ax:by * ba. Ay:bs. ((y,x.1),x.2)

Is a proof that

(bl %k bz) — b3 — ((b3 * bl) % bz)

-

Dan Grossman CSE505 Fall 2007, Lecture 10

20

/VVhy care’

Because:
e This is just fascinating (glad I'm not a dog).
e For decades these were separate fields.

e Thinking “the other way" can help you know what's
possible /impossible

e Can form the basis for automated theorem provers
e Type systems should not be ad hoc piles of rules!

So, every typed A-calculus is a proof system for a logic...

Is STAC with pairs and sums a complete proof system for
propositional logic? Almost...

-

Dan Grossman CSE505 Fall 2007, Lecture 10

21

/Classical vs. Constructive \

Classical propositional logic has the “law of the excluded middle":

I' - p1 + (p1 — p2)

(Think “p or not p” — also equivalent to double-negation.)
STAC has no proof for this; there is no expression with this type.

Logics without this rule are called constructive. They're useful because
proofs “know how the world is” and “are executable” and “produce

examples’ .

You can still “branch on possibilities™:

((p1 + (p1 — p2)) * (P1 — p3) * ((pPr — pP2) — P3)) — P3

- /

Dan Grossman CSE505 Fall 2007, Lecture 10 22

/Example classical proof \

Theorem: | can always wake up at 9AM and get to campus by 10AM.

Proof: If it is a weekday, | can take a bus that leaves at 9:30AM. If it
is not a weekday, traffic is light and | can drive. Since it is a weekday
or not a weekday, | can get to campus by 10AM.

Problem: If you wake up and don't know if it's a weekday, this proof
does not let you construct a plan to get to campus by 10AM.

In constructive logic, that never happens. You can always extract a
program from a proof that “does” what you proved “could be".

You could not prove the theorem above, but you could prove, “If |

know whether it is a weekday or not, then ...

- /

Dan Grossman CSE505 Fall 2007, Lecture 10 23

/Fix

A “non-terminating proof” is no proof at all.

Remember the typing rule for fix:

'Fe:7— 1

I'fixe:T

So the “logic” is inconsistent (and therefore worthless).

an exception, infinite loop, etc.)

let rec £f x = f x
let z =€ 0

-

That let’s us prove anything! For example: fix Ax:bs. x has type bg.

Related: In ML, a value of type ’a never terminates normally (raises

/

Dan Grossman CSE505 Fall 2007, Lecture 10

24

/I_ast word on Curry-Howard

~

It's not just STAC and intuitionistic propositional logic.

Every logic has a correspondng typed A calculus (and no consistent

logic has something like fix).

e Example: When we add universal types (“generics”) in a few

lectures, that corresponds to adding universal quantification.

-

Dan Grossman CSE505 Fall 2007, Lecture 10

25

ﬂl'oward Evaluation Contexts

~

(untyped) A-calculus with extensions has lots of “boring inductive rules”:

/ / / /
e — e; €2 — e, e — e e — e

/ / / /
e1e2 —e€ej €2 vey —>vey, el—oe.l e2—e.2

/ / / /
e1 — ej €2 — €5 e —> e e — e

(e1,e2) — (e1,e2) (vi,e2) — (vi,ez) A(e) — A(e) B(e) — B(

/
€ — €

match e with Az. e; | By. e2 — match e’ with Az. e; | By. e-

and some “interesting do-work rules” :

(Ax. e) v — elv/x] (v1,v2).1 — v1 (v1,v2).2 — w2

match A(v) with Az. e; | By. e2 — e1[v/x]

\\ match B(v) with Ay. e1 | Bx. e2 — ez[v/x]

/

Dan Grossman CSE505 Fall 2007, Lecture 10 26

/Evaluation Contexts \

We can define evaluation contexts, which are expressions with one hole

where “interesting work” may occur:

E = [||Ee|vE|(E,e)| (v,E)| E.1| E.2
| A(FE) | B(FE) | (match E with Ax. e; | By. e2)

Define “filling the hole” E[e] in the obvious way (see ML code).
Semantics is now just “interesting work” rules (written e — e’) and:
e > e
Ele] — El€]

So far, just concise notation pushing the work to decomposition: Given

e, find an E, e, €] such that e = E[e,] and eq LN el

Theorem (Unique Decomposition): If - - e : 7, then e is a value or

\ihere is exactly one decomposition of e. /

Dan Grossman CSE505 Fall 2007, Lecture 10 27

~

/Second Implementation

So far two interpreters:
e Old-fashioned small-step: derive a step, and iterate

e Evaluation-context small-step: decompose, fill the whole with the

result of the primitive-step, and iterate

Decomposing “all over” each time is awfully redundant (as is the

old-fashioned build a full-derivation of each step).

We can “incrementally maintain the decomposition™ if we represent it

conveniently. Instead of nested contexts, we can keep a list:
S i:= .| Lapp(e)::S | Rapp(v)::S | Lpair(e)::S | ...

See the code: This representation is isomorphic (there's a bijection) to

\S/aluation contexts. /

CSE505 Fall 2007, Lecture 10 28

Dan Grossman

/Stack—based machine \

This new form of evaluation-context is a stack.

Since we don’t re-decompose at each step, our “program state” is a
stack and an expression.

At each step, the stack may grow (to recur on a nested expression) or
shrink (to do a primitive step)

Now that we have an explicit stack, we are not using the
meta-language’s call-stack (the interpreter is just a while-loop).

But substitution is still using the meta-language’s call-stack.

- /

Dan Grossman CSE505 Fall 2007, Lecture 10 29

/Stack—based with environments \

Our last step uses environments, much like you will in homework 3.

Now everything in our interpreter is tail-recursive (beyond the explicit
representation of environments and stacks, we need only O(1) space).

You could implement this last interpreter in assembly without using a

call instruction.

- /

Dan Grossman CSE505 Fall 2007, Lecture 10 30

/Conclusions \

Proving each interpreter version equivalent to the next is tractable.

In our last version, every primitive step is O(1) time and space except
variable lookup (but that's easily fixed in a compiler).

Perhaps more interestingly, evaluation contexts “give us a handle” on
the “surrounding computation”, which will let us do funky things like
make “stacks” (called continuations) first-class in the language.

e ‘get current continuation; bind it to a variable”

e ‘“replace current continuation with saved one”

e = ...|letccx. e |throw e e |cont E

v = ...|cont E

2= ... |throw E e | throw v E

_

\\E[Ietcc x. e] — Ele[cont E/x]] E[throw (cont E’) v] — E’[v]

Dan Grossman CSE505 Fall 2007, Lecture 10 31

