Type Safety for ST λ C with Constants

Most of this is available in Dan's slides. However it, is good to see all of it in one place.

Syntax

$$
\begin{aligned}
e & ::=c|\lambda x \cdot e| x \mid e e \\
v & ::=c \mid \lambda x \cdot e \\
\tau & ::=\text { int } \mid \tau \rightarrow \tau \\
\Gamma & ::=\cdot \mid \Gamma, x: \tau
\end{aligned}
$$

Evaluation Rules

$e \rightarrow e^{\prime}$

| E-Apply | E-App1
 $(\lambda x . e) v \rightarrow e[v / x]$ | $e_{1} \rightarrow e_{1}^{\prime}$
 $e_{1} e_{2} \rightarrow e_{1}^{\prime} e_{2}$ |
| :--- | :--- | :--- | | E-Apr2 |
| :--- |
| $v e_{2} \rightarrow v e_{2}^{\prime}$ |

Typing Rules

$\Gamma \vdash e: \tau$

$\frac{\text { T-Const }}{\Gamma \vdash c: \text { int }}$	$\frac{\text { T-VAR }}{\Gamma \vdash x: \Gamma(x)}$

T-Fun
$\frac{\Gamma, x: \tau_{1} \vdash e: \tau_{2} \quad x \notin \operatorname{Dom}(\Gamma)}{\Gamma \vdash \lambda x . e: \tau_{1} \rightarrow \tau_{2}}$

T-VAR
$\overline{\Gamma \vdash x: \Gamma(x)}$

T-App
$\frac{\Gamma \vdash e_{1}: \tau_{2} \rightarrow \tau_{1} \quad \Gamma \vdash e_{2}: \tau_{2}}{\Gamma \vdash e_{1} e_{2}: \tau_{1}}$

Proof

We need the following lemma for our proof of Progress, below.
Lemma (Canonical Forms). If e is a value and $\Gamma \vdash e: \tau$, then
i If τ is int, e is of the form c, and
ii If τ is $\tau_{1} \rightarrow \tau_{2}$, e is of the form $\lambda x . e^{\prime}$.
Canonical Forms. The proof is by inspection of the typing rules.
i If τ is int, the only rule which allows us to give a value this type is T-Const, which requires that e be of the form c.
ii If τ is $\tau_{1} \rightarrow \tau_{2}$, the only rule which allows us to give a value this type is T-FUN, which requires that e be of the form $\lambda x . e^{\prime}$.

Theorem (Progress). If $\cdot \vdash e: \tau$, then either e is a value or there exists some e such that $e \rightarrow e^{\prime}$.

Progress. The proof is by induction on (the height of) the derivation of $\Gamma \vdash e: \tau$. There are four cases.

T-Const e is c, which is a value, so we are done.
T-Var Impossible, as Γ is \cdot.
T-Fun e is $\lambda x . e^{\prime}$, which is a value, so we are done.
T-ApP e is $e_{1} e_{2}$.
By inversion, $\Gamma \vdash e_{1}: \tau_{2} \rightarrow T_{1}$ and $\Gamma \vdash e_{2}: \tau_{2}$.
If e_{1} is not a value, and we know above that $\Gamma \vdash e_{1}: \tau_{2} \rightarrow \tau_{1}$, so by our $\mathrm{IH}, e_{1} \rightarrow e_{1}^{\prime}$ for some e_{1}^{\prime}. Therefore, by E-App1, $e_{1} e_{2} \rightarrow e_{1}^{\prime} e_{2}$.
If e_{1} is a value and e_{2} is not a value, and we know above that $\Gamma \vdash e_{2}: \tau_{2}$, so by our IH, $e_{2} \rightarrow e_{2}^{\prime}$ for some e_{2}^{\prime}. Therefore, by E-APP2, $e_{1} e_{2} \rightarrow e_{1} e_{2}^{\prime}$.
If both e_{1} and e_{2} are values, and we know above that $\Gamma \vdash e_{1}: \tau_{2} \rightarrow \tau_{1}, e_{1}$ is some λx. e^{\prime} by Canonical Forms, so λx. $e^{\prime} e_{2} \rightarrow e^{\prime}\left[e_{2} / x\right]$ by E-Apply.

We will need the following lemma for our proof of Preservation, below.
Lemma (Substitution). If $\Gamma, x: \tau^{\prime} \vdash e: \tau$ and $\Gamma \vdash e^{\prime}: \tau^{\prime}$, then $\Gamma \vdash e\left[e^{\prime} / x\right]: \tau$

To prove this lemma, we will need the following two lemmas, which I will not prove.
Lemma (Weakening). If $\Gamma \vdash e: T$, then $\Gamma, x: \tau^{\prime} \vdash e: \tau$
Weakening. By induction on the derivation of $\Gamma \vdash e: \tau$.
Lemma (Exchange). If $\Gamma, x: \tau_{1}, y: \tau_{2} \vdash e: \tau$, then $\Gamma, y: \tau_{2}, x: \tau_{1} \vdash e: \tau$.
Exchange. By induction on the derivation of $\Gamma \vdash e: \tau$.
Now we prove Substitution.
Substitution. The proof is by induction on the derivation of $\Gamma \vdash e: \tau$. There are four cases. In all cases, we know that $\Gamma \vdash e^{\prime}: \tau^{\prime}$, for some e^{\prime} and τ^{\prime}.

T-Const e is c, and $\Gamma, x: \tau^{\prime} \vdash c:$ int.
$c\left[e^{\prime} / x\right]$ is c, and by T-Const, $\Gamma \vdash c:$ int.
T-VAR e is y and $\Gamma, x: \tau^{\prime} \vdash y: \tau$.
If $y \neq x$, then $y\left[e^{\prime} / x\right]$ is y . By inversion on the typing rule, we know that $\left(\Gamma, x: \tau^{\prime}\right)(y)=$ τ. Since $y \neq x$, we know that $\Gamma(y)=\tau$. Bt T-VAR, we know $\Gamma \vdash y: \tau$.
If $y=x$, then $y\left[e^{\prime} / x\right]$ is $\mathrm{e}^{\prime} . \Gamma, x: \tau^{\prime} \vdash x: \tau$, so by inversion, $\left(\Gamma, x: \tau^{\prime}\right)(x)=\tau$, so $\tau=\tau^{\prime}$. We know $\Gamma \vdash e^{\prime}: \tau^{\prime}$, so $\Gamma \vdash e^{\prime}: \tau$.

T-APP e is $e_{1} e_{2}$, so $e\left[x / e^{\prime}\right]$ is $\left(e_{1}\left[x / e^{\prime}\right]\right)\left(e_{2}\left[x / e^{\prime}\right]\right)$.
We know $\Gamma, x: \tau^{\prime} \vdash e_{1} e_{2}: \tau_{1}$, so, by inversion on the typing rule, we know $\Gamma, x: \tau^{\prime} \vdash e_{1}$: $\tau_{2} \rightarrow \tau_{1}$ and $\Gamma, x: \tau^{\prime} \vdash e_{2}: \tau_{2}$.
By induction, we know that $\Gamma \vdash e_{1}\left[e^{\prime} / x\right]: \tau_{2} \rightarrow \tau_{1}$ and $\Gamma \vdash e_{2}\left[e^{\prime} / x\right]: \tau_{2}$.
From these, by T-App, we know $\Gamma \vdash\left(e_{1} e_{2}\right)\left[e^{\prime} / x\right]: \tau_{1}$.
T-FUN e is λy. e_{b}, so $e\left[x / e^{\prime}\right]$ is λx. $\left(e_{b}\left[x / e^{\prime}\right]\right)$.
We know that $\Gamma, x: \tau^{\prime} \vdash \lambda y$. $e_{b}: \tau_{1} \rightarrow \tau_{2}$, so, by inversion on the typing rule, we know that $\Gamma, x: \tau^{\prime}, y: \tau_{1} \vdash e_{b}: \tau_{2}$.
By Exchange, we know that $\Gamma, y: \tau_{1}, x: \tau^{\prime} \vdash e_{b}: \tau_{2}$.
By Weakening, we know that $\Gamma, y: \tau_{1} \vdash e^{\prime}: \tau^{\prime}$.
We have rearranged the two typing judgments so that our induction hypothesis applies, so, by induction, $\Gamma, y: \tau_{1} \vdash e_{b}\left[e^{\prime} / x\right]: \tau_{2}$.
By T-Fun, $\Gamma \vdash \lambda y . e_{b}\left[e^{\prime} / x\right]: \tau_{1} \rightarrow \tau_{2}$.
By the definition of substitution, $\Gamma \vdash \lambda y . e_{b}\left[e^{\prime} / x\right]: \tau_{1} \rightarrow \tau_{2}$.

Theorem. Preservation If $\Gamma \vdash e: \tau$ and $e \rightarrow e^{\prime}$, then $\Gamma \vdash e: \tau$.

Preservation. The proof is by induction on the derivation of $\cdot \vdash e: \tau$. There are four cases.
T-Const e is c. This case is impossible, as c does not evaluate.
T-Var e is x. This case is impossible, as x cannot be typechecked under the empty context.
T-Fun e is $\lambda x . e_{b}$. This case is impossible, as $\lambda x . e_{b}$ does not evaluate.
T-App e is $e_{1} e_{2}$, so $\cdot \vdash e_{1} e_{2}: \tau_{1}$.
By inversion on the typing rule, $\cdot \vdash e_{1}: \tau_{2} \rightarrow \tau_{1}$ and $\cdot \vdash e_{2}: \tau_{2}$.
There are three cases for $e_{1} e_{2} \rightarrow e^{\prime}$.
E-App1 $e_{1} e_{2} \rightarrow e_{1}^{\prime} e_{2}$.
By inversion on the evaluation rule, $e_{1} \rightarrow e_{1}^{\prime}$.
By induction, $\cdot \vdash e_{1}^{\prime}: \tau_{2} \rightarrow \tau_{1}$.
By T-App, $\cdot \vdash e_{1}^{\prime} e_{2}: \tau_{1}$.
E-App2 $v e \rightarrow v e_{2}^{\prime}$.
By inversion on the evaluation rule, $e_{2} \rightarrow e_{2}^{\prime}$.
By induction, $\cdot \vdash e_{2}^{\prime}: \tau_{2}$.
By T-App, $\cdot \vdash v e_{2}^{\prime}: \tau_{1}$.
E-Apply $\lambda x . e_{b} v \rightarrow e_{b}[v / x]$.
e_{1} is $\lambda x . e_{b}$, and we know $\cdot \vdash e_{1}: \tau_{2} \tau_{1}$, so, by inversion on the typing rule, we know $x: \tau_{2} \vdash e_{b}: \tau_{1}$.
We know $\cdot \vdash e_{2}: \tau_{2}$.
By Substitution, we know $\cdot \vdash e_{b}[v / x]: \tau_{1}$.

