Type Safety for $\mathrm{ST}\lambda\mathrm{C}$ with Constants

Most of this is available in Dan's slides. However it, is good to see all of it in one place.

Syntax

Evaluation Rules

 $e \rightarrow e'$

$$\frac{\text{E-APPLY}}{(\lambda x. e) \ v \to e[v/x]} \quad \frac{\text{E-APP1}}{e_1 \to e'_1} \quad \frac{\text{E-APP2}}{e_2 \to e'_2} \quad \frac{e_2 \to e'_2}{v \ e_2 \to v \ e'_2}$$

Typing Rules

 $\Gamma \vdash e : \tau$

$$\overline{\Gamma \vdash c:\mathsf{int}}$$

T-VAR

$$\Gamma \vdash x : \Gamma(x)$$

$$\frac{\underset{\Gamma, x: \tau_1 \vdash e: \tau_2}{\Gamma \vdash \lambda x. \ e: \tau_1 \rightarrow \tau_2} x \not\in \operatorname{Dom}(\Gamma)}{\Gamma \vdash \lambda x. \ e: \tau_1 \rightarrow \tau_2}$$

 $\frac{\begin{array}{c} \text{T-App} \\ \Gamma \vdash e_1 : \tau_2 \rightarrow \tau_1 \\ \hline \Gamma \vdash e_1 : e_2 : \tau_1 \end{array}}{\Gamma \vdash e_1 : e_2 : \tau_1}$

Proof

We need the following lemma for our proof of Progress, below.

Lemma (Canonical Forms). If e is a value and $\Gamma \vdash e : \tau$, then

i If
$$\tau$$
 is int, *e* is of the form *c*, and

ii If τ is $\tau_1 \to \tau_2$, e is of the form λx . e'.

Canonical Forms. The proof is by inspection of the typing rules.

- i If τ is int, the only rule which allows us to give a value this type is T-CONST, which requires that e be of the form c.
- ii If τ is $\tau_1 \to \tau_2$, the only rule which allows us to give a value this type is T-FUN, which requires that e be of the form λx . e'.

Theorem (Progress). If $\cdot \vdash e : \tau$, then either e is a value or there exists some e such that $e \rightarrow e'$.

Progress. The proof is by induction on (the height of) the derivation of $\Gamma \vdash e : \tau$. There are four cases.

T-CONST e is c, which is a value, so we are done.

T-VAR Impossible, as Γ is \cdot .

T-FUN e is λx . e', which is a value, so we are done.

T-APP e is $e_1 e_2$.

By inversion, $\Gamma \vdash e_1 : \tau_2 \to T_1$ and $\Gamma \vdash e_2 : \tau_2$.

If e_1 is not a value, and we know above that $\Gamma \vdash e_1 : \tau_2 \to \tau_1$, so by our IH, $e_1 \to e'_1$ for some e'_1 . Therefore, by E-APP1, $e_1 e_2 \to e'_1 e_2$.

If e_1 is a value and e_2 is not a value, and we know above that $\Gamma \vdash e_2 : \tau_2$, so by our IH, $e_2 \rightarrow e'_2$ for some e'_2 . Therefore, by E-APP2, $e_1 e_2 \rightarrow e_1 e'_2$.

If both e_1 and e_2 are values, and we know above that $\Gamma \vdash e_1 : \tau_2 \to \tau_1, e_1$ is some $\lambda x. e'$ by Canonical Forms, so $\lambda x. e' e_2 \to e'[e_2/x]$ by E-APPLY.

We will need the following lemma for our proof of Preservation, below.

Lemma (Substitution). If $\Gamma, x: \tau' \vdash e : \tau$ and $\Gamma \vdash e' : \tau'$, then $\Gamma \vdash e[e'/x] : \tau$

To prove this lemma, we will need the following two lemmas, which I will not prove.

Lemma (Weakening). If $\Gamma \vdash e : T$, then $\Gamma, x: \tau' \vdash e : \tau$

Weakening. By induction on the derivation of $\Gamma \vdash e : \tau$.

Lemma (Exchange). If $\Gamma, x:\tau_1, y:\tau_2 \vdash e:\tau$, then $\Gamma, y:\tau_2, x:\tau_1 \vdash e:\tau$.

Exchange. By induction on the derivation of $\Gamma \vdash e : \tau$.

Now we prove Substitution.

Substitution. The proof is by induction on the derivation of $\Gamma \vdash e : \tau$. There are four cases. In all cases, we know that $\Gamma \vdash e' : \tau'$, for some e' and τ' .

T-CONST e is c, and $\Gamma, x: \tau' \vdash c:$ int.

c[e'/x] is c, and by T-CONST, $\Gamma \vdash c$: int.

T-VAR e is y and $\Gamma, x: \tau' \vdash y: \tau$.

If $y \neq x$, then y[e'/x] is y. By inversion on the typing rule, we know that $(\Gamma, x:\tau')(y) = \tau$. Since $y \neq x$, we know that $\Gamma(y) = \tau$. Bt T-VAR, we know $\Gamma \vdash y: \tau$.

If y = x, then y[e'/x] is e'. $\Gamma, x: \tau' \vdash x : \tau$, so by inversion, $(\Gamma, x: \tau')(x) = \tau$, so $\tau = \tau'$. We know $\Gamma \vdash e' : \tau'$, so $\Gamma \vdash e' : \tau$.

T-APP *e* is $e_1 e_2$, so e[x/e'] is $(e_1[x/e']) (e_2[x/e'])$.

We know $\Gamma, x:\tau' \vdash e_1 \ e_2 : \tau_1$, so, by inversion on the typing rule, we know $\Gamma, x:\tau' \vdash e_1 : \tau_2 \to \tau_1$ and $\Gamma, x:\tau' \vdash e_2 : \tau_2$.

By induction, we know that $\Gamma \vdash e_1[e'/x] : \tau_2 \to \tau_1$ and $\Gamma \vdash e_2[e'/x] : \tau_2$.

From these, by T-APP, we know $\Gamma \vdash (e_1 \ e_2)[e'/x] : \tau_1$.

T-FUN *e* is λy . e_b , so e[x/e'] is λx . $(e_b[x/e'])$.

We know that $\Gamma, x:\tau' \vdash \lambda y. e_b : \tau_1 \to \tau_2$, so, by inversion on the typing rule, we know that $\Gamma, x:\tau', y:\tau_1 \vdash e_b : \tau_2$.

By Exchange, we know that $\Gamma, y:\tau_1, x:\tau' \vdash e_b: \tau_2$.

By Weakening, we know that $\Gamma, y:\tau_1 \vdash e': \tau'$.

We have rearranged the two typing judgments so that our induction hypothesis applies, so, by induction, $\Gamma, y: \tau_1 \vdash e_b[e'/x] : \tau_2$.

By T-FUN, $\Gamma \vdash \lambda y$. $e_b[e'/x] : \tau_1 \to \tau_2$.

By the definition of substitution, $\Gamma \vdash \lambda y. e_b[e'/x] : \tau_1 \to \tau_2$.

Theorem. Preservation If $\Gamma \vdash e : \tau$ and $e \rightarrow e'$, then $\Gamma \vdash e : \tau$.

Preservation. The proof is by induction on the derivation of $\cdot \vdash e : \tau$. There are four cases.

T-CONST e is c. This case is impossible, as c does not evaluate.

T-VAR e is x. This case is impossible, as x cannot be typechecked under the empty context.

- T-FUN e is $\lambda x. e_b$. This case is impossible, as $\lambda x. e_b$ does not evaluate.
- T-APP e is $e_1 e_2$, so $\cdot \vdash e_1 e_2 : \tau_1$. By inversion on the typing rule, $\cdot \vdash e_1 : \tau_2 \to \tau_1$ and $\cdot \vdash e_2 : \tau_2$. There are three cases for $e_1 e_2 \to e'$.
 - E-APP1 $e_1 \ e_2 \rightarrow e'_1 \ e_2$. By inversion on the evaluation rule, $e_1 \rightarrow e'_1$. By induction, $\cdot \vdash e'_1 : \tau_2 \rightarrow \tau_1$. By T-APP, $\cdot \vdash e'_1 \ e_2 : \tau_1$.
 - E-APP2 $v e \rightarrow v e'_2$.
 - By inversion on the evaluation rule, $e_2 \rightarrow e'_2$. By induction, $\cdot \vdash e'_2 : \tau_2$.
 - By T-APP, $\cdot \vdash v \ e'_2 : \tau_1$.
 - E-APPLY $\lambda x. e_b v \to e_b[v/x].$

 e_1 is $\lambda x. e_b$, and we know $\cdot \vdash e_1 : \tau_2 \tau_1$, so, by inversion on the typing rule, we know $x:\tau_2 \vdash e_b : \tau_1$. We know $\cdot \vdash e_2 : \tau_2$.

By Substitution, we know $\cdot \vdash e_b[v/x] : \tau_1$.