
Type Safety for STλC with Constants

Most of this is available in Dan’s slides. However it, is good to see all of it in one place.

Syntax

e ::= c | λx. e | x | e e
v ::= c | λx. e
τ ::= int | τ → τ
Γ ::= · | Γ, x:τ

Evaluation Rules

e → e′

E-Apply

(λx. e) v → e[v/x]

E-App1
e1 → e′

1

e1 e2 → e′
1 e2

E-App2
e2 → e′

2

v e2 → v e′
2

Typing Rules

Γ ` e : τ

T-Const

Γ ` c : int

T-Var

Γ ` x : Γ(x)

T-Fun
Γ, x : τ1 ` e : τ2 x 6∈ Dom(Γ)

Γ ` λx. e : τ1 → τ2

T-App
Γ ` e1 : τ2 → τ1 Γ ` e2 : τ2

Γ ` e1 e2 : τ1

1

Proof

We need the following lemma for our proof of Progress, below.

Lemma (Canonical Forms). If e is a value and Γ ` e : τ , then

i If τ is int, e is of the form c, and

ii If τ is τ1 → τ2, e is of the form λx. e′.

Canonical Forms. The proof is by inspection of the typing rules.

i If τ is int, the only rule which allows us to give a value this type is T-Const, which
requires that e be of the form c.

ii If τ is τ1 → τ2, the only rule which allows us to give a value this type is T-Fun, which
requires that e be of the form λx. e′.

Theorem (Progress). If · ` e : τ , then either e is a value or there exists some e such that
e → e′.

Progress. The proof is by induction on (the height of) the derivation of Γ ` e : τ . There are
four cases.

T-Const e is c, which is a value, so we are done.

T-Var Impossible, as Γ is ·.

T-Fun e is λx. e′, which is a value, so we are done.

T-App e is e1 e2.

By inversion, Γ ` e1 : τ2 → T1 and Γ ` e2 : τ2.

If e1 is not a value, and we know above that Γ ` e1 : τ2 → τ1, so by our IH, e1 → e′
1

for some e′
1. Therefore, by E-App1, e1 e2 → e′

1 e2.

If e1 is a value and e2 is not a value, and we know above that Γ ` e2 : τ2, so by our IH,
e2 → e′

2 for some e′
2. Therefore, by E-App2, e1 e2 → e1 e′

2.

If both e1 and e2 are values, and we know above that Γ ` e1 : τ2 → τ1, e1 is some λx. e′

by Canonical Forms, so λx. e′ e2 → e′[e2/x] by E-Apply.

We will need the following lemma for our proof of Preservation, below.

Lemma (Substitution). If Γ, x:τ ′ ` e : τ and Γ ` e′ : τ ′, then Γ ` e[e′/x] : τ

2

To prove this lemma, we will need the following two lemmas, which I will not prove.

Lemma (Weakening). If Γ ` e : T , then Γ, x:τ ′ ` e : τ

Weakening. By induction on the derivation of Γ ` e : τ .

Lemma (Exchange). If Γ, x:τ1, y:τ2 ` e : τ , then Γ, y:τ2, x:τ1 ` e : τ .

Exchange. By induction on the derivation of Γ ` e : τ .

Now we prove Substitution.

Substitution. The proof is by induction on the derivation of Γ ` e : τ . There are four cases.
In all cases, we know that Γ ` e′ : τ ′, for some e′ and τ ′.

T-Const e is c, and Γ, x:τ ′ ` c : int.

c[e′/x] is c, and by T-Const, Γ ` c : int.

T-Var e is y and Γ, x:τ ′ ` y : τ .

If y 6= x, then y[e′/x] is y. By inversion on the typing rule, we know that (Γ, x:τ ′)(y) =
τ . Since y 6= x, we know that Γ(y) = τ . Bt T-Var, we know Γ ` y : τ .

If y = x, then y[e′/x] is e’. Γ, x:τ ′ ` x : τ , so by inversion, (Γ, x:τ ′)(x) = τ , so τ = τ ′.
We know Γ ` e′ : τ ′, so Γ ` e′ : τ .

T-App e is e1 e2, so e[x/e′] is (e1[x/e′]) (e2[x/e′]).

We know Γ, x:τ ′ ` e1 e2 : τ1, so, by inversion on the typing rule, we know Γ, x:τ ′ ` e1 :
τ2 → τ1 and Γ, x:τ ′ ` e2 : τ2.

By induction, we know that Γ ` e1[e
′/x] : τ2 → τ1 and Γ ` e2[e

′/x] : τ2.

From these, by T-App, we know Γ ` (e1 e2)[e
′/x] : τ1.

T-Fun e is λy. eb, so e[x/e′] is λx. (eb[x/e′]).

We know that Γ, x:τ ′ ` λy. eb : τ1 → τ2, so, by inversion on the typing rule, we know
that Γ, x:τ ′, y:τ1 ` eb : τ2.

By Exchange, we know that Γ, y:τ1, x:τ ′ ` eb : τ2.

By Weakening, we know that Γ, y:τ1 ` e′ : τ ′.

We have rearranged the two typing judgments so that our induction hypothesis applies,
so, by induction, Γ, y:τ1 ` eb[e

′/x] : τ2.

By T-Fun, Γ ` λy. eb[e
′/x] : τ1 → τ2.

By the definition of substitution, Γ ` λy. eb[e
′/x] : τ1 → τ2.

Theorem. Preservation If Γ ` e : τ and e → e′, then Γ ` e : τ .

3

Preservation. The proof is by induction on the derivation of · ` e : τ . There are four cases.

T-Const e is c. This case is impossible, as c does not evaluate.

T-Var e is x. This case is impossible, as x cannot be typechecked under the empty context.

T-Fun e is λx. eb. This case is impossible, as λx. eb does not evaluate.

T-App e is e1 e2, so · ` e1 e2 : τ1.

By inversion on the typing rule, · ` e1 : τ2 → τ1 and · ` e2 : τ2.

There are three cases for e1 e2 → e′.

E-App1 e1 e2 → e′
1 e2.

By inversion on the evaluation rule, e1 → e′
1.

By induction, · ` e′
1 : τ2 → τ1.

By T-App, · ` e′
1 e2 : τ1.

E-App2 v e → v e′
2.

By inversion on the evaluation rule, e2 → e′
2.

By induction, · ` e′
2 : τ2.

By T-App, · ` v e′
2 : τ1.

E-Apply λx. eb v → eb[v/x].

e1 is λx. eb, and we know · ` e1 : τ2τ1, so, by inversion on the typing rule, we
know x:τ2 ` eb : τ1.

We know · ` e2 : τ2.

By Substitution, we know · ` eb[v/x] : τ1.

4

