
'

&

$

%

CSE 505:
Concepts of Programming Languages

Dan Grossman

Fall 2008

Lecture 18— Advanced Concepts in Object-Oriented Programming

Dan Grossman CSE505 Fall 2008, Lecture 18 1



'

&

$

%

So far. . .

The difference between OOP and “records of functions with shared

private state” is dynamic-dispatch (a.k.a. late-binding) of self.

Informally defined method-lookup to implement dynamic-dispatch

correctly (using run-time tags or code-pointers).

Now: briefly investigate the difference between subclassing and

subtyping.

Then fancy stuff: multiple-inheritance, interfaces, overloading, multiple

dispatch.

Next lecture: Bounded polymorphism and classless OOP

Dan Grossman CSE505 Fall 2008, Lecture 18 2



'

&

$

%

Type-Safety in OOP

Should be clearer about what type-safety means. . .

• “Not getting stuck” has meant “don’t apply numbers”, “don’t

add functions”, “don’t read non-existent record fields”, etc.

• In pure OO, we have only method calls (and maybe field access)

– Stuck if method-lookup fails (no method matches)

– Stuck if method-lookup is ambiguous (no best match)

So far, we have only failure because no method of the right name.

Dan Grossman CSE505 Fall 2008, Lecture 18 3



'

&

$

%

Revisiting Subclassing is Subtyping

Recall we have been “confusing” classes and types: C is a class and a

type and if C extends D then C is a subtype of D.

Therefore, if C overrides f, the type of f in C must be a subtype of

the type of f in D.

Just like functions, method-subtyping is contravariant arguments and

covariant results.

If code knows it has a C, it can call f with “more” arguments and

know there are “fewer” results.

Dan Grossman CSE505 Fall 2008, Lecture 18 4



'

&

$

%

Subtyping and Dynamic Dispatch

We defined dynamic dispatch in terms of functions taking self as an

argument — bound in environment while evaluating function body.

But unlike other arguments, self is covariant!!

(Else overriding method couldn’t access new fields/methods.)

This is sound because self must be passed, not another value with the

supertype.

This is the key reason encoding OO in a typed λ-calculus requires

ingenuity, fancy types, and/or run-time cost.

(We won’t attempt it.)

Dan Grossman CSE505 Fall 2008, Lecture 18 5



'

&

$

%

More subtyping

With single-inheritance and the class/type confusion, we don’t get all

the subtyping we want. Example: Taking any object that has an f

method from int to int.

Interfaces help somewhat, but class declarations must still say they

implement an interface.

Object-types bring the flexibility of structural subtyping to OO.

With object-types, “subclassing implies subtyping”

Dan Grossman CSE505 Fall 2008, Lecture 18 6



'

&

$

%

More subclassing

Breaking one direction of “subclassing = subtyping” allowed more

subtyping (so more code reuse).

Breaking the other direction (“subclassing does not imply subtyping”)

allows more inheritance (so more code reuse).

Simple idea: If C extends D and overrides a method in a way that

makes C ≤ D unsound, then C 6≤ D. This is useful:

class P1 { ... Int get_x(); Int compare(P1); ... }

class P2 extends P1 { ... Int compare(P2); ... }

This is not always correct – may need to re-typecheck get_x in P2 in

case it assumes a type for compare.

Dan Grossman CSE505 Fall 2008, Lecture 18 7



'

&

$

%

Subclass not a subtype

class P1 {

Int x;

Int get_x() { x }

Bool compare(P1 p) { self.get_x() == p.get_x() }

}

class P2 extends P1 {

Int y;

Int get_y() { y }

Bool compare(P2 p) { self.get_x() == p.get_x() &&

self.get_y() == p.get_y() }

}

• Allowing P2≤P1 is unsound! (assuming compare in P2 is

overriding unlike in Java or C++)

Dan Grossman CSE505 Fall 2008, Lecture 18 8



'

&

$

%

Subclass not a subtype

• Can still inherit implementation (need not reimplement get_x).

• We cannot always do this (what if get_x called self.compare)?

Possible solutions:

– Re-typecheck get_x in subclass

– Use a “Really Fancy Type System”

Personally, I see little use in allowing subclassing that is not subtyping.

But I see much use in understanding that typing is about interfaces

and inheritance is about code-sharing. Confusing them restricts both.

Dan Grossman CSE505 Fall 2008, Lecture 18 9



'

&

$

%

Where we are

Summary of last 6 slides: Separating types and classes expands the

language, but clarifies the concepts:

• Typing is about interfaces, subtyping about broader interfaces

• Inheritance (a.k.a. subclassing) is about code-sharing

Combining typing and inheritance restricts both.

• Most OO languages purposely confuse subtyping (about

type-checking) and inheritance (about code-sharing)

• Please use terms correctly (at least for next 2 weeks)

Dan Grossman CSE505 Fall 2008, Lecture 18 10



'

&

$

%

Multiple Inheritance

Why not allow class C extends C1,C2,...{...}

(and C≤C1 and C≤C2)?

What everyone agrees on: C++ has it and Java doesn’t.

All we’ll do: Understand a couple basic problems it introduces and

how interfaces get most of the good and little of the bad.

Problem sources:

• Class hierarchy is a dag, not a tree (not true with interfaces).

• Subtype hierarchy is a dag, not a tree (true with interfaces).

Dan Grossman CSE505 Fall 2008, Lecture 18 11



'

&

$

%

Diamond Issues

If C extends C1 and C2 and C1,C2 have a common superclass D

(perhaps transitively), our class hierarchy has a diamond.

• If D has a field f , should C have one field f or two?

• If D has a method m, C1 and C2 will have a clash.

• If subsumption is coercive (changing method-lookup), how we

subsume from C to D affects run-time behavior (incoherent).

Diamonds are common, largely because of types like Object with

methods like equals.

Dan Grossman CSE505 Fall 2008, Lecture 18 12



'

&

$

%

Multiple Inheritance, Method-Name Clash

If C extends C1 and C2 which both define a method m, what does

C mean? Possibilities:

1. Reject declaration of C. (Too restrictive with diamonds)

2. Require C to override m.

3. “Left-side” (C1) wins. (Must decide if upcast to “right-side”

(C2) coerces to use C2’s m or not.)

4. C gets both methods. (Now upcasts definitely coercive and with

diamonds we lose coherence.)

5. Other (I’m just brainstorming based on sound principles)?

Dan Grossman CSE505 Fall 2008, Lecture 18 13



'

&

$

%

Implementation Issues

This isn’t an implementation course, but many semantic issues

regarding multiple inheritance have been heavily influenced by clever

implementations. In particular, accessing members of self via

compile-time offsets.

Won’t work with multiple inheritance unless upcasts “adjust” the self

pointer.

That’s one reason C++ has different kinds of casts.

Better to think semantically first (how should subsumption affect the

behavior of method-lookup) and implementation-wise second (what

can I optimize based on the class/type hierarchy)

Dan Grossman CSE505 Fall 2008, Lecture 18 14



'

&

$

%

Digression: Casts

A “cast” can mean many things (cf. C++).

At the language level:

• upcast (no run-time effect)

• downcast (run-time failure is defined or undefined?)

• conversion (key question is round-tripping)

• “reinterpret bits” (not well-defined)

At the implementation level:

• upcast (usually no run-time effect but see last slide)

• downcast (usually only run-time effect is failure, but...)

• conversion (same as at language level)

• “reinterpret bits” (no effect by definition)

Dan Grossman CSE505 Fall 2008, Lecture 18 15



'

&

$

%

Least Supertypes

Consider if e1 then e2 else e3 (or in C++/Java, e1 ? e2 : e3).

We know e2 and e3 must have the same type.

With subtyping, they just need a common supertype. And we should

pick the least (most-specific) type. With single inheritance, it’s the

closest common ancestor in the class-hierarchy tree.

With multiple inheritance, there may be no least common supertype.

(Example: C1 extends D1, D2 and C2 extends D1, D2)

Solutions: Reject (i.e., programmer must insert explicit casts to pick a

common supertype)

Dan Grossman CSE505 Fall 2008, Lecture 18 16



'

&

$

%

Multiple Inheritance Summary

• Method clashes (what does inheriting m mean)

• Diamond issues (coherence issues, shared (?) fields)

• Implementation issues (slower method-lookup)

• Least supertypes (may be ambiguous)

Complicated constructs lead to difficult language design.

Now we will develop interfaces and see how (and how not) multiple

interfaces are simpler than multiple inheritance.

Dan Grossman CSE505 Fall 2008, Lecture 18 17



'

&

$

%

Interfaces

An interface is just a (named) (object) type. Example:

interface I { Int get_x(); Bool compare(I); }

A class can implement an interface. Example:

class C implements I {

Int x;

Int get_x() {x}

Bool compare(I i) {...} // note argument type!

}

If C implements I, then C ≤ I.

Requiring explicit “implements” hinders extensibility, but simplifies

type-checking (a little).

Basically, C implements I if C could extend a class with all abstract

methods from I.

Dan Grossman CSE505 Fall 2008, Lecture 18 18



'

&

$

%

Interfaces, continued

Subinterfaces (interface J extends I { ...}) work exactly as

subtyping suggests they should.

An unnecessary (?) addition to a language with abstract classes and

multiple inheritance, but what about single inheritance and multiple

interfaces:

class C extends D implements I1,I2,...,In

• Method clashes (no problem, inherit from D)

• Diamond issues (no problem, no implementation diamond)

• Implementation issues (still a “problem”, different object of type I

will have different layouts)

• Least supertypes (still a problem, this is a typing issue)

Dan Grossman CSE505 Fall 2008, Lecture 18 19



'

&

$

%

Using Interfaces

Although it requires more keystrokes, it may make sense (be more

extensible) to:

• Use interface types for all fields and variables.

• Don’t use constructors directly

(for class C implementing I, write:

I makeI(...) { new C(...) }.

This is related to “factory patterns”; constructors are behind a level of

indirection.

It is using named object-types instead of class-based types. Next

lecture we’ll consider OO with no classes and only unnamed

object-types.

Dan Grossman CSE505 Fall 2008, Lecture 18 20



'

&

$

%

Static Overloading

So far, we have assumed every method had a different name (same

name implied overriding and required a subtype).

Many OO languages allow the same name for methods with different

argument types:

A f(B x) { ... }

C f(D x, E y) { ... }

F f(G x, H z) { ... }

Complicates definition of method-lookup for e1.m(e2,...,en)

Previously, we had dynamic-dispatch on e1: method-lookup a function

of the run-time type of the object e1 evaluates to.

We now have static overloading : Method-lookup is also a function of

the compile-time types of e2,...,en.

Dan Grossman CSE505 Fall 2008, Lecture 18 21



'

&

$

%

Static Overloading Continued

Because of subtyping, multiple methods can match!

“Best-match” can be roughly “subsume fewest arguments. For a tie,

allow subsumption to immediate supertypes and recur”

Ambiguities remain (no best match):

• A f(B) vs. C f(B) (usually rejected)

• A f(I) vs. A f(J) for f(e) where e has type T , T ≤ I, T ≤ J

and I,J are incomparable (We saw this before)

• A f(B,C) vs. A f(C,B) for f(e1,e2) where B ≤ C, and e1

and e2 have type B

Type systems often reject ambiguous calls or use ad hoc rules to give

a best match (e.g., “left-argument precedence”)

Dan Grossman CSE505 Fall 2008, Lecture 18 22



'

&

$

%

Multiple Dispatch

Static overloading saves keystrokes from shorter method-names

• We know the compile-time types of arguments at each call-site, so

we could call methods with different names.

Multiple (dynamic) dispatch (a.k.a. multimethods) is much more

interesting: Method-lookup a function of the run-time types of

arguments.

It’s a natural generalization: the “receiver” argument is no longer

treated differently!

So e1.m(e2,...,en) is just sugar for m(e1,e2,...,en). (It wasn’t

before, e.g., when e1 is self and may be a subtype!)

Dan Grossman CSE505 Fall 2008, Lecture 18 23



'

&

$

%

Example

class A { int f; }

class B extends A { int g; }

Bool compare(A x, A y) { x.f == y.f }

Bool compare(B x, B y) { x.f == y.f && x.g == y.g }

Bool f(A x, A y, A z) { compare(x,y) && compare(y,z) }

Neat: late-binding for both arguments to compare (choose second

method if both arguments are subtypes of B, else first method).

With power comes danger. Tricky question: Can we add

“&& compare(x,z)” to body of f and have an equivalent function?

• With static overloading?

• With multiple dispatch?

Dan Grossman CSE505 Fall 2008, Lecture 18 24



'

&

$

%

Pragmatics

Not clear where multimethods should be defined — no longer

“everything in a class”

So multimethods are “more OO” because “more late-binding” but

“less OO” because less “receiver-oriented”.

Multimethods can be added to Java (UWCSE PhD 2003), but work

well (better?) in a classless OO language.

Several languages have multimethods and several are from UW.

Dan Grossman CSE505 Fall 2008, Lecture 18 25



'

&

$

%

Revenge of Ambiguity

The “no best match” issues with static overloading exist with

multimethods and ambiguities arise at run-time. It’s undecidable if

“no best match” will happen:

// B <= C

A f(B,C) {...}

A f(C,B) {...}

unit g(C a, C b) { f(a,b); /* may be ambiguous */ }

Possible solutions:

• Raise exception when no best match

• Define “best match” such that it always exists (Dylan?)

• Reject at compile-time methods that do not have a “best match”

for all possible argument types

Dan Grossman CSE505 Fall 2008, Lecture 18 26



'

&

$

%

Summary so far

Quickly sketched many advanced issues in class-based OOP:

• multiple inheritance — thorny semantics

• interfaces — less thorny, but no least supertypes

• static overloading — reuse method names, get ambiguities

• multimethods — generalizes late-binding, ambiguities at run-time

But there’s still no good way to define a container type

(e.g., homogeneous lists).

• Add back in parametric polymorphism

Dan Grossman CSE505 Fall 2008, Lecture 18 27


