CSE 505:
Concepts of Programming Languages

Dan Grossman
Fall 2008
Lecture 18— Advanced Concepts in Object-Oriented Programming

- /

Dan Grossman CSE505 Fall 2008, Lecture 18 1

/So far. . . \

The difference between OOP and ‘“records of functions with shared

private state” is dynamic-dispatch (a.k.a. late-binding) of self.

Informally defined method-lookup to implement dynamic-dispatch
correctly (using run-time tags or code-pointers).

Now: briefly investigate the difference between subclassing and
subtyping.

Then fancy stuff: multiple-inheritance, interfaces, overloading, multiple
dispatch.

Next lecture: Bounded polymorphism and classless OOP

- /

Dan Grossman CSE505 Fall 2008, Lecture 18 2

ﬂl’ype—Safety in OOP \

Should be clearer about what type-safety means. ..

e “Not getting stuck” has meant “don’t apply numbers”, “don’t
add functions”, “don’t read non-existent record fields”, etc.

e In pure OO, we have only method calls (and maybe field access)
— Stuck if method-lookup fails (no method matches)
— Stuck if method-lookup is ambiguous (no best match)

So far, we have only failure because no method of the right name.

- /

Dan Grossman CSE505 Fall 2008, Lecture 18 3

/Revisiting Subclassing is Subtyping \

Recall we have been “confusing” classes and types: C'is a class and a
type and if C extends D then C is a subtype of D.

Therefore, if C overrides £, the type of £ in C' must be a subtype of
the type of £ in D.

Just like functions, method-subtyping is contravariant arguments and
covariant results.

If code knows it has a C, it can call £ with “more” arguments and
know there are “fewer” results.

- /

Dan Grossman CSE505 Fall 2008, Lecture 18 4

/Subtyping and Dynamic Dispatch \

We defined dynamic dispatch in terms of functions taking self as an

argument — bound in environment while evaluating function body.

But unlike other arguments, self is covariant!!
(Else overriding method couldn't access new fields/methods.)

This is sound because self must be passed, not another value with the
supertype.

This is the key reason encoding OO in a typed A-calculus requires
ingenuity, fancy types, and/or run-time cost.

(We won't attempt it.)

- /

Dan Grossman CSE505 Fall 2008, Lecture 18 5

/I\/Iore subtyping \

With single-inheritance and the class/type confusion, we don't get all

the subtyping we want. Example: Taking any object that has an £
method from int to int.

Interfaces help somewhat, but class declarations must still say they
implement an interface.

Object-types bring the flexibility of structural subtyping to OO.

With object-types, “subclassing implies subtyping”

- /

Dan Grossman CSE505 Fall 2008, Lecture 18 6

/I\/Iore subclassing \

Breaking one direction of “subclassing = subtyping” allowed more

subtyping (so more code reuse).

Breaking the other direction (“subclassing does not imply subtyping”™)
allows more inheritance (so more code reuse).

Simple idea: If C extends D and overrides a method in a way that
makes C' < D unsound, then C £ D. This is useful:

class P1 { ... Int get_x(); Int compare(P1l); ... }
class P2 extends P1 { ... Int compare(P2); ... }

This is not always correct — may need to re-typecheck get_x in P2 in

case it assumes a type for compare.

- /

Dan Grossman CSE505 Fall 2008, Lecture 18 7

‘s

ubclass not a subtype

class P1 {

+

Int x;
Int get_x() { x }
Bool compare(P1 p) { self.get_x() == p.get_x(O) }

class P2 extends P1 {

-

Int y;

Int get_yO {y }

Bool compare(P2 p) { self.get_x() == p.get_x() &&
self.get_y() == p.get_y(O }

e Allowing P2<P1 is unsound! (assuming compare in P2 is
overriding unlike in Java or C4++)

/

Dan Grossman CSE505 Fall 2008, Lecture 18

/Subclass not a subtype \

e Can still inherit implementation (need not reimplement get_x).
e \We cannot always do this (what if get_x called self.compare)?
Possible solutions:
— Re-typecheck get_x in subclass
— Use a "Really Fancy Type System”
Personally, | see little use in allowing subclassing that is not subtyping.

But | see much use in understanding that typing is about interfaces
and inheritance is about code-sharing. Confusing them restricts both.

- /

Dan Grossman CSE505 Fall 2008, Lecture 18 9

/VVhere we are

~

Summary of last 6 slides: Separating types and classes expands the
language, but clarifies the concepts:

e Typing is about interfaces, subtyping about broader interfaces
e Inheritance (a.k.a. subclassing) is about code-sharing
Combining typing and inheritance restricts both.

e Most OO languages purposely confuse subtyping (about
type-checking) and inheritance (about code-sharing)

e Please use terms correctly (at least for next 2 weeks)

-

Dan Grossman CSE505 Fall 2008, Lecture 18 10

/I\/Iultiple Inheritance

Why not allow class C extends C1,C2,...{...}
(and C<C1 and CL(C2)?

What everyone agrees on: C++ has it and Java doesn't.

All we'll do: Understand a couple basic problems it introduces and
how interfaces get most of the good and little of the bad.

Problem sources:

e Class hierarchy is a dag, not a tree (not true with interfaces).

e Subtype hierarchy is a dag, not a tree (true with interfaces).

-

Dan Grossman CSE505 Fall 2008, Lecture 18 11

/Diamond |ssues \

If C extends C'1 and C2 and C'1,C'2 have a common superclass D
(perhaps transitively), our class hierarchy has a diamond.

e |f D has a field f, should C have one field f or two?
e |If D has a method m, C1 and C2 will have a clash.

e If subsumption is coercive (changing method-lookup), how we
subsume from C to D affects run-time behavior (incoherent).

Diamonds are common, largely because of types like Object with
methods like equals.

- /

Dan Grossman CSE505 Fall 2008, Lecture 18 12

/I\/Iultiple Inheritance, Method-Name Clash \

If C' extends C'1 and C2 which both define a method m, what does
C mean? Possibilities:

1. Reject declaration of C. (Too restrictive with diamonds)
2. Require C to override m.

3. “Left-side” (C1) wins. (Must decide if upcast to “right-side”
(C2) coerces to use C2's m or not.)

4. C gets both methods. (Now upcasts definitely coercive and with

diamonds we lose coherence.)

5. Other (I'm just brainstorming based on sound principles)?

- /

Dan Grossman CSE505 Fall 2008, Lecture 18 13

/Implementation Issues \

This isn’'t an implementation course, but many semantic issues

regarding multiple inheritance have been heavily influenced by clever
implementations. In particular, accessing members of self via
compile-time offsets.

Won't work with multiple inheritance unless upcasts “adjust” the self
pointer.

That's one reason C+-+ has different kinds of casts.

Better to think semantically first (how should subsumption affect the
behavior of method-lookup) and implementation-wise second (what
can | optimize based on the class/type hierarchy)

- /

Dan Grossman CSE505 Fall 2008, Lecture 18 14

/Digression: Casts

A ‘“cast” can mean many things (cf. C++).

At the language level:
e upcast (no run-time effect)
e downcast (run-time failure is defined or undefined?)
e conversion (key question is round-tripping)
e “reinterpret bits” (not well-defined)
At the implementation level:
e upcast (usually no run-time effect but see last slide)
e downcast (usually only run-time effect is failure, but...)

e conversion (same as at language level)

\\o “reinterpret bits” (no effect by definition)

Dan Grossman CSE505 Fall 2008, Lecture 18

15

/I_east Supertypes \

Consider if e; then e else ez (or in C++/Java, e; 7 es : e3).

We know e5 and eg must have the same type.

With subtyping, they just need a common supertype. And we should
pick the least (most-specific) type. With single inheritance, it's the
closest common ancestor in the class-hierarchy tree.

With multiple inheritance, there may be no least common supertype.
(Example: C1 extends D1, D2 and C2 extends D1, D2)

Solutions: Reject (i.e., programmer must insert explicit casts to pick a
common supertype)

- /

Dan Grossman CSE505 Fall 2008, Lecture 18 16

/I\/Iultiple Inheritance Summary

e Method clashes (what does inheriting m mean)

e Diamond issues (coherence issues, shared (7) fields)
e Implementation issues (slower method-lookup)

e Least supertypes (may be ambiguous)

Complicated constructs lead to difficult language design.

Now we will develop interfaces and see how (and how not) multiple
interfaces are simpler than multiple inheritance.

-

Dan Grossman CSE505 Fall 2008, Lecture 18 17

/Interfa ces \

An interface is just a (named) (object) type. Example:
interface I { Int get_x(); Bool compare(I); }

A class can implement an interface. Example:
class C implements I {

Int x;

Int get_x() {x}

Bool compare(I i) {...} // note argument type!
+

If C' implements I, then C' < I.

Requiring explicit “implements” hinders extensibility, but simplifies
type-checking (a little).

Basically, C' implements I if C' could extend a class with all abstract

methods from 1.

- /

Dan Grossman CSE505 Fall 2008, Lecture 18 18

/Interfaces, continued

~

Subinterfaces (interface J extends I { ...}) work exactly as

subtyping suggests they should.

An unnecessary (7) addition to a language with abstract classes and
multiple inheritance, but what about single inheritance and multiple
interfaces:

class C extends D implements I1,I2,...,In
e Method clashes (no problem, inherit from D)

e Diamond issues (no problem, no implementation diamond)

will have different layouts)

e Least supertypes (still a problem, this is a typing issue)

-

e Implementation issues (still a “problem”, different object of type I

/

Dan Grossman CSE505 Fall 2008, Lecture 18 19

/Using Interfaces \

Although it requires more keystrokes, it may make sense (be more

extensible) to:
e Use interface types for all fields and variables.

e Don't use constructors directly
(for class C' implementing I, write:
I makeI(...) { new C(...) }

This is related to “factory patterns’; constructors are behind a level of

indirection.

It is using named object-types instead of class-based types. Next
lecture we'll consider OO with no classes and only unnamed
object-types.

- /

Dan Grossman CSE505 Fall 2008, Lecture 18 20

/Static Overloading \

So far, we have assumed every method had a different name (same

name implied overriding and required a subtype).

Many OO languages allow the same name for methods with different
argument types:

AfBx){...13}
CfdOx, Ey) { ...}
F f(Gx, Hz) { ... }

Complicates definition of method-lookup for e1.m(e2,...,en)

Previously, we had dynamic-dispatch on el: method-lookup a function
of the run-time type of the object el evaluates to.

We now have static overloading: Method-lookup is also a function of

\ihe compile-time types of e2,...,en. /

Dan Grossman CSE505 Fall 2008, Lecture 18 21

/Static Overloading Continued \

Because of subtyping, multiple methods can match!

“Best-match” can be roughly “subsume fewest arguments. For a tie,
allow subsumption to immediate supertypes and recur”

Ambiguities remain (no best match):
e A £(B) vs. C £(B) (usually rejected)

e A £(I) vs. A £(J) for f(e) wheree hastype T’ T < I, T < J
and I,J are incomparable (We saw this before)

e A £f(B,C) vs. A £(C,B) for f(el,e2) where B < C, and el
and e2 have type B

Type systems often reject ambiguous calls or use ad hoc rules to give
a best match (e.g., “left-argument precedence”)

- /

Dan Grossman CSE505 Fall 2008, Lecture 18 22

/I\/Iultiple Dispatch

~

Static overloading saves keystrokes from shorter method-names

we could call methods with different names.

interesting: Method-lookup a function of the run-time types of

arguments.

treated differently!

before, e.g., when el is self and may be a subtype!)

-

e \We know the compile-time types of arguments at each call-site, so

Multiple (dynamic) dispatch (a.k.a. multimethods) is much more

It's a natural generalization: the “receiver” argument is no longer

So el.m(e2,...,en) is just sugar for m(el,e2,...,en). (It wasn't

/

Dan Grossman CSE505 Fall 2008, Lecture 18

23

/Example

class A { int f; }

class B extends A { int g; }

Bool compare(A x, Ay) { x.f ==y.f }

Bool compare(B x, By) { x.f ==y.f & x.g == y.g }
Bool f(A x, Ay, A z) { compare(x,y) && compare(y,z) }

Neat: late-binding for both arguments to compare (choose second
method if both arguments are subtypes of B, else first method).

With power comes danger. Tricky question: Can we add
“&& compare(x,z)” to body of £ and have an equivalent function?

e With static overloading?

e With multiple dispatch?

-

/

Dan Grossman CSE505 Fall 2008, Lecture 18 24

/Pragmatics \

Not clear where multimethods should be defined — no longer

“everything in a class”

So multimethods are “more OO" because “more late-binding” but

“less OO" because less “receiver-oriented’ .

Multimethods can be added to Java (UWCSE PhD 2003), but work
well (better?) in a classless OO language.

Several languages have multimethods and several are from UW.

- /

Dan Grossman CSE505 Fall 2008, Lecture 18 25

/Revenge of Ambiguity \

The “no best match” issues with static overloading exist with
multimethods and ambiguities arise at run-time. It's undecidable if

“no best match” will happen:

// B <= C

A £(B,C) {...}

A £(C,B) {...}

unit g(C a, C b) { £(a,b); /* may be ambiguous */ }

Possible solutions:
e Raise exception when no best match
e Define “best match” such that it always exists (Dylan?)

e Reject at compile-time methods that do not have a “best match”

for all possible argument types

- /

Dan Grossman CSE505 Fall 2008, Lecture 18 26

/Summary so far \

Quickly sketched many advanced issues in class-based OOP:

e multiple inheritance — thorny semantics

e interfaces — less thorny, but no least supertypes

e static overloading — reuse method names, get ambiguities

e multimethods — generalizes late-binding, ambiguities at run-time

But there’s still no good way to define a container type
(e.g., homogeneous lists).

e Add back in parametric polymorphism

- /

Dan Grossman CSE505 Fall 2008, Lecture 18 27

