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CSE 505:
Concepts of Programming Languages

Dan Grossman

Fall 2008

Lecture 18— Advanced Concepts in Object-Oriented Programming
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So far. . .

The difference between OOP and “records of functions with shared

private state” is dynamic-dispatch (a.k.a. late-binding) of self.

Informally defined method-lookup to implement dynamic-dispatch

correctly (using run-time tags or code-pointers).

Now: briefly investigate the difference between subclassing and

subtyping.

Then fancy stuff: multiple-inheritance, interfaces, overloading, multiple

dispatch.

Next lecture: Bounded polymorphism and classless OOP
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Type-Safety in OOP

Should be clearer about what type-safety means. . .

• “Not getting stuck” has meant “don’t apply numbers”, “don’t

add functions”, “don’t read non-existent record fields”, etc.

• In pure OO, we have only method calls (and maybe field access)

– Stuck if method-lookup fails (no method matches)

– Stuck if method-lookup is ambiguous (no best match)

So far, we have only failure because no method of the right name.
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Revisiting Subclassing is Subtyping

Recall we have been “confusing” classes and types: C is a class and a

type and if C extends D then C is a subtype of D.

Therefore, if C overrides f, the type of f in C must be a subtype of

the type of f in D.

Just like functions, method-subtyping is contravariant arguments and

covariant results.

If code knows it has a C, it can call f with “more” arguments and

know there are “fewer” results.
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Subtyping and Dynamic Dispatch

We defined dynamic dispatch in terms of functions taking self as an

argument — bound in environment while evaluating function body.

But unlike other arguments, self is covariant!!

(Else overriding method couldn’t access new fields/methods.)

This is sound because self must be passed, not another value with the

supertype.

This is the key reason encoding OO in a typed λ-calculus requires

ingenuity, fancy types, and/or run-time cost.

(We won’t attempt it.)
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More subtyping

With single-inheritance and the class/type confusion, we don’t get all

the subtyping we want. Example: Taking any object that has an f

method from int to int.

Interfaces help somewhat, but class declarations must still say they

implement an interface.

Object-types bring the flexibility of structural subtyping to OO.

With object-types, “subclassing implies subtyping”
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More subclassing

Breaking one direction of “subclassing = subtyping” allowed more

subtyping (so more code reuse).

Breaking the other direction (“subclassing does not imply subtyping”)

allows more inheritance (so more code reuse).

Simple idea: If C extends D and overrides a method in a way that

makes C ≤ D unsound, then C 6≤ D. This is useful:

class P1 { ... Int get_x(); Int compare(P1); ... }

class P2 extends P1 { ... Int compare(P2); ... }

This is not always correct – may need to re-typecheck get_x in P2 in

case it assumes a type for compare.

Dan Grossman CSE505 Fall 2008, Lecture 18 7



'

&

$

%

Subclass not a subtype

class P1 {

Int x;

Int get_x() { x }

Bool compare(P1 p) { self.get_x() == p.get_x() }

}

class P2 extends P1 {

Int y;

Int get_y() { y }

Bool compare(P2 p) { self.get_x() == p.get_x() &&

self.get_y() == p.get_y() }

}

• Allowing P2≤P1 is unsound! (assuming compare in P2 is

overriding unlike in Java or C++)
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Subclass not a subtype

• Can still inherit implementation (need not reimplement get_x).

• We cannot always do this (what if get_x called self.compare)?

Possible solutions:

– Re-typecheck get_x in subclass

– Use a “Really Fancy Type System”

Personally, I see little use in allowing subclassing that is not subtyping.

But I see much use in understanding that typing is about interfaces

and inheritance is about code-sharing. Confusing them restricts both.
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Where we are

Summary of last 6 slides: Separating types and classes expands the

language, but clarifies the concepts:

• Typing is about interfaces, subtyping about broader interfaces

• Inheritance (a.k.a. subclassing) is about code-sharing

Combining typing and inheritance restricts both.

• Most OO languages purposely confuse subtyping (about

type-checking) and inheritance (about code-sharing)

• Please use terms correctly (at least for next 2 weeks)
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Multiple Inheritance

Why not allow class C extends C1,C2,...{...}

(and C≤C1 and C≤C2)?

What everyone agrees on: C++ has it and Java doesn’t.

All we’ll do: Understand a couple basic problems it introduces and

how interfaces get most of the good and little of the bad.

Problem sources:

• Class hierarchy is a dag, not a tree (not true with interfaces).

• Subtype hierarchy is a dag, not a tree (true with interfaces).
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Diamond Issues

If C extends C1 and C2 and C1,C2 have a common superclass D

(perhaps transitively), our class hierarchy has a diamond.

• If D has a field f , should C have one field f or two?

• If D has a method m, C1 and C2 will have a clash.

• If subsumption is coercive (changing method-lookup), how we

subsume from C to D affects run-time behavior (incoherent).

Diamonds are common, largely because of types like Object with

methods like equals.
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Multiple Inheritance, Method-Name Clash

If C extends C1 and C2 which both define a method m, what does

C mean? Possibilities:

1. Reject declaration of C. (Too restrictive with diamonds)

2. Require C to override m.

3. “Left-side” (C1) wins. (Must decide if upcast to “right-side”

(C2) coerces to use C2’s m or not.)

4. C gets both methods. (Now upcasts definitely coercive and with

diamonds we lose coherence.)

5. Other (I’m just brainstorming based on sound principles)?
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Implementation Issues

This isn’t an implementation course, but many semantic issues

regarding multiple inheritance have been heavily influenced by clever

implementations. In particular, accessing members of self via

compile-time offsets.

Won’t work with multiple inheritance unless upcasts “adjust” the self

pointer.

That’s one reason C++ has different kinds of casts.

Better to think semantically first (how should subsumption affect the

behavior of method-lookup) and implementation-wise second (what

can I optimize based on the class/type hierarchy)
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Digression: Casts

A “cast” can mean many things (cf. C++).

At the language level:

• upcast (no run-time effect)

• downcast (run-time failure is defined or undefined?)

• conversion (key question is round-tripping)

• “reinterpret bits” (not well-defined)

At the implementation level:

• upcast (usually no run-time effect but see last slide)

• downcast (usually only run-time effect is failure, but...)

• conversion (same as at language level)

• “reinterpret bits” (no effect by definition)
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Least Supertypes

Consider if e1 then e2 else e3 (or in C++/Java, e1 ? e2 : e3).

We know e2 and e3 must have the same type.

With subtyping, they just need a common supertype. And we should

pick the least (most-specific) type. With single inheritance, it’s the

closest common ancestor in the class-hierarchy tree.

With multiple inheritance, there may be no least common supertype.

(Example: C1 extends D1, D2 and C2 extends D1, D2)

Solutions: Reject (i.e., programmer must insert explicit casts to pick a

common supertype)
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Multiple Inheritance Summary

• Method clashes (what does inheriting m mean)

• Diamond issues (coherence issues, shared (?) fields)

• Implementation issues (slower method-lookup)

• Least supertypes (may be ambiguous)

Complicated constructs lead to difficult language design.

Now we will develop interfaces and see how (and how not) multiple

interfaces are simpler than multiple inheritance.
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Interfaces

An interface is just a (named) (object) type. Example:

interface I { Int get_x(); Bool compare(I); }

A class can implement an interface. Example:

class C implements I {

Int x;

Int get_x() {x}

Bool compare(I i) {...} // note argument type!

}

If C implements I, then C ≤ I.

Requiring explicit “implements” hinders extensibility, but simplifies

type-checking (a little).

Basically, C implements I if C could extend a class with all abstract

methods from I.
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Interfaces, continued

Subinterfaces (interface J extends I { ...}) work exactly as

subtyping suggests they should.

An unnecessary (?) addition to a language with abstract classes and

multiple inheritance, but what about single inheritance and multiple

interfaces:

class C extends D implements I1,I2,...,In

• Method clashes (no problem, inherit from D)

• Diamond issues (no problem, no implementation diamond)

• Implementation issues (still a “problem”, different object of type I

will have different layouts)

• Least supertypes (still a problem, this is a typing issue)
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Using Interfaces

Although it requires more keystrokes, it may make sense (be more

extensible) to:

• Use interface types for all fields and variables.

• Don’t use constructors directly

(for class C implementing I, write:

I makeI(...) { new C(...) }.

This is related to “factory patterns”; constructors are behind a level of

indirection.

It is using named object-types instead of class-based types. Next

lecture we’ll consider OO with no classes and only unnamed

object-types.
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Static Overloading

So far, we have assumed every method had a different name (same

name implied overriding and required a subtype).

Many OO languages allow the same name for methods with different

argument types:

A f(B x) { ... }

C f(D x, E y) { ... }

F f(G x, H z) { ... }

Complicates definition of method-lookup for e1.m(e2,...,en)

Previously, we had dynamic-dispatch on e1: method-lookup a function

of the run-time type of the object e1 evaluates to.

We now have static overloading : Method-lookup is also a function of

the compile-time types of e2,...,en.

Dan Grossman CSE505 Fall 2008, Lecture 18 21



'

&

$

%

Static Overloading Continued

Because of subtyping, multiple methods can match!

“Best-match” can be roughly “subsume fewest arguments. For a tie,

allow subsumption to immediate supertypes and recur”

Ambiguities remain (no best match):

• A f(B) vs. C f(B) (usually rejected)

• A f(I) vs. A f(J) for f(e) where e has type T , T ≤ I, T ≤ J

and I,J are incomparable (We saw this before)

• A f(B,C) vs. A f(C,B) for f(e1,e2) where B ≤ C, and e1

and e2 have type B

Type systems often reject ambiguous calls or use ad hoc rules to give

a best match (e.g., “left-argument precedence”)
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Multiple Dispatch

Static overloading saves keystrokes from shorter method-names

• We know the compile-time types of arguments at each call-site, so

we could call methods with different names.

Multiple (dynamic) dispatch (a.k.a. multimethods) is much more

interesting: Method-lookup a function of the run-time types of

arguments.

It’s a natural generalization: the “receiver” argument is no longer

treated differently!

So e1.m(e2,...,en) is just sugar for m(e1,e2,...,en). (It wasn’t

before, e.g., when e1 is self and may be a subtype!)
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Example

class A { int f; }

class B extends A { int g; }

Bool compare(A x, A y) { x.f == y.f }

Bool compare(B x, B y) { x.f == y.f && x.g == y.g }

Bool f(A x, A y, A z) { compare(x,y) && compare(y,z) }

Neat: late-binding for both arguments to compare (choose second

method if both arguments are subtypes of B, else first method).

With power comes danger. Tricky question: Can we add

“&& compare(x,z)” to body of f and have an equivalent function?

• With static overloading?

• With multiple dispatch?
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Pragmatics

Not clear where multimethods should be defined — no longer

“everything in a class”

So multimethods are “more OO” because “more late-binding” but

“less OO” because less “receiver-oriented”.

Multimethods can be added to Java (UWCSE PhD 2003), but work

well (better?) in a classless OO language.

Several languages have multimethods and several are from UW.
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Revenge of Ambiguity

The “no best match” issues with static overloading exist with

multimethods and ambiguities arise at run-time. It’s undecidable if

“no best match” will happen:

// B <= C

A f(B,C) {...}

A f(C,B) {...}

unit g(C a, C b) { f(a,b); /* may be ambiguous */ }

Possible solutions:

• Raise exception when no best match

• Define “best match” such that it always exists (Dylan?)

• Reject at compile-time methods that do not have a “best match”

for all possible argument types
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Summary so far

Quickly sketched many advanced issues in class-based OOP:

• multiple inheritance — thorny semantics

• interfaces — less thorny, but no least supertypes

• static overloading — reuse method names, get ambiguities

• multimethods — generalizes late-binding, ambiguities at run-time

But there’s still no good way to define a container type

(e.g., homogeneous lists).

• Add back in parametric polymorphism
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